Q 1 :    

Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:           [2024]

  • 1:2

     

  • 1:2

     

  • 2:1

     

  • 2:1

     

(3)             

                 We know

                  sinc=n2n1n1n2=1sinc

                  n1n2=1sin45=21

                   n1:n2=2:1

 



Q 2 :    

A light ray is incident on a glass slab of thickness 43 cm and refractive index 2. The angle of incidence is equal to the critical angle for the glass slab with air. The lateral displacement of ray after passing through glass slab is ____ cm.

(Given sin15o = 0.25)                               [2024]



(2)

i=θci=sin-1(1μ)

i=45°

According to Snell’s law,

1sin45°=2sinr12=2sinr12=2sinr

r=30°

Now, Δx=tsec30°sin15°=43×23×14=2 cm



Q 3 :    

Two immiscible liquids of refractive indices 85 and 32 respectively are put in a beaker as shown in the figure. The height of each column is 6 cm. A coin is placed at the bottom of the beaker. For near normal vision, the apparent depth of the coin is α4cm. The value of α is ____.         [2024]



(31)

happ=h1μ1+h2μ2=68/5+63/2=4+154=314 cm

 



Q 4 :    

What is the lateral shift of a ray refracted through a parallel sided glass slab of thickness 'h' in terms of the angle of incidence 'i' and angle of refraction 'r', if the glass slab is placed in air medium?          [2025]

  • h tan (ir)tan r

     

  • h cos (ir)sin r

     

  • h

     

  • h sin (ir)cos r

     

(4)

AB = h sec r

BC = h sec r sin (ir)

BC = h sin (ir)cos r



Q 5 :    

A hemispherical vessel is completely filled with a liquid of refractive index μ. A small coin is kept at the lowest point (O) of the vessel as shown in figure. The minimum value of the refractive index of the liquid so that a person can see the coin from point E (at the level of the vessel) is ________.          [2025]

  • 3

     

  • 32

     

  • 2

     

  • 32

     

(3)

For the rays from coin to reach the point E, the refracted rays must graze the surface, i.e., they must be incident at critical angle θc inside the liquid.

μ=1sin θc

μ is minimum when θc is maximum.

Maximum value of θc=45°

 μ has a minimum value of 2.



Q 6 :    

At the interface between two materials having refractive indices n1 and n2, the critical angle for reflection of an em wave is θ1C. The n2 material is replaced by another material having refractive index n3, such that the critical angle at the interface between n1 and n3 material is θ2C. If n3>n2>n1n2n3=25 and sin θ2Csin θ1C=12, then θ1C is           [2025]

  • sin1(16n1)

     

     

  • sin1(23n1)

     

  • sin1(56n1)

     

  • sin1(13n1)

     

(none)

n2 sin(θ1C)=n1  sin(θ1C)=n1n2

n3 sin(θ2C)=n1  sin(θ2C)=n1n3

Also, n3 =5n22  sin(θ2C)=2n15n2

 n1n2=52·sin(θ2C)  sin(θ2C)sin(θ1C)=12

Given, 2n15n2n1n2=12  n1n2(35)=12

Coming out to be (–ve).



Q 7 :    

A transparent block A having refractive index μ = 1.25 is surrounded by another medium of refractive index μ = 1.0 as shown in figure. A light ray is incident on the flat face of the block with incident angle θ as shown in figure. What is the maximum value of θ for which light suffers total internal reflection at top surface of the block?          [2025]

  • tan1(4/3)

     

  • tan1(3/4)

     

  • sin1(3/4)

     

  • cos1(3/4)

     

(3)

 

r+θC=90°  r=90°θC

At 1st refraction : 1×sin θ=54sin r

 sin r=45sin θ          ... (i)

At point TIR:

54sin θC=1.sin 90°  54sin θC=1

sin(90r)=45  cos r=45

 sin r=35          ... (ii)

From (i) and (ii), θ=sin1(34)



Q 8 :    

Two light beams fall on a transparent material block at point 1 and 2 with angle θ1 and θ2, respectively, as shown in figure. After refraction, the beams intersect at point 3 which is exactly on the interface at other end of the block.

Given: the distance between 1 and 2, d=43 cm and θ1=θ2=cos1(n22n1), where refractive index of the block n2 > refractive index of the outside medium n1, then the thickness of the block is __________ cm.          [2025]



(6)

n1 sin (90θ1)=n2 sin r

n1×n22n1=n2 sin r

sin r=12  r=30°

tan r=(d/2t)

t=d2 tan r=d32=(43)32=6 cm



Q 9 :    

A container contains a liquid with refractive index of 1.2 up to a height of 60 cm and another liquid having refractive index 1.6 is added to height H above first liquid. If viewed from above, the apparent shift in the position of bottom of container is 40 cm. The value of H is __________ cm. (Consider liquids are immisible)          [2025]



(80)

Shift t=40 cm

t=60(111.2)+H(111.6)

 40=(16)60+H(38)

30=H×38  H=80 cm