Q 41 :

Let B and C be the two points on the line y+x=0 such that B and C are symmetric with respect to the origin. Suppose A is a point on y-2x=2 such that ABC is an equilateral triangle. Then, the area of ABC is              [2023]

  • 23    

     

  • 83    

     

  • 33    

     

  • 103

     

(2)

Let point x=α lie on line y-2x=2  and point x=β lie on line y+x=0

Now, slope of AM=2+2αα=1

α=-2

      AM=22

And β=23

        AB=22×23=423

Area of ABC=34(AB)2=34×323=83



Q 42 :

A straight line cuts off the intercepts OA = a and OB = b on the positive directions of the x-axis and y-axis respectively. If the perpendicular from origin O to this line makes an angle of π6 with the positive direction of the y-axis and the area of OAB is 9833, then a2-b2 is equal to            [2023]

  • 3923

     

  • 1963

     

  • 196 

     

  • 98

     

(1)

Let the perpendicular distance be p.

The equation of the line AB is given as

xcosπ3+ysinπ3=p

 x·12+y32=p

 x2+y(23)=px2p+y2p3=1                       ...(i)

Intercept form of line AB will be xa+yb=1         ...(ii)
Comparing eq (i) and (ii), we get a=2p, b=2p3

Now, area of triangle OAB=9833

So, 12ab=983312×2p×2p3=9833 2p2=98

p2=49p=7    (p0)

    a=2×7=14,     b=2×73=143

   a2-b2=(14)2-(143)2=3923



Q 43 :

Let the equations of two adjacent sides of a parallelogram ABCD be 2x-3y=-23 and 5x+4y=23. If the equation of its one diagonal AC is 3x+7y=23 and the distance of A from the other diagonal is d, then 50d2 is equal to ________ .          [2023]



(529)

We have, 2x-3y=-23            (i)

                    5x+4y=23                (ii)

and              3x+7y=23               (iii)

Solve eqn. (i) and (iii), we get  A(-4,5)

Solve eqn. (ii) and (iii), we get  C(3,2)

Solve eqn. (i) and (ii), we get  B(-1,7)

Mid point of AC will be  (-12,72).

Equation of diagonal BD is

y-72=7/2-1/2(x+12)

 7x+y=0

Distance of A from diagonal BD is

d=|7×(-4)+5|49+1=2350

 50d2=(23)2=529



Q 44 :

If the line l1:3y-2x=3 is the angular bisector of the lines l2:x-y+1=0 and l3:αx+βy+17=0, then α2+β2-α-β is equal to ______ .      [2023]



(348)

Point of intersection of  l1:3y-2x=3 and l2:x-y+1=0 is P(0,1),

which lies on l3:αx+βy+17=0, β=-17

Consider a random point Q(-1,0) on l2:x-y+1=0

Image of point Q about  l1:2x-3y+3=0 is  Q'(-1713,613).

which can be calculated by the formula,

x-(-1)2=y-0-3=-2(-2+3)13

Now, Q' lies on l3:αx+βy+17=0

   α=7

Now, α2+β2-α-β=348



Q 45 :

The equations of the sides AB, BC and CA of a triangle ABC are: 2x+y=0, x+py=21a(a0) and x-y=3 respectively. Let P(2,a) be the centroid of ABC. Then (BC)2 is equal to _______ .         [2023]



(122)

2=1+α+β+33

  6=4+α+β

  α+β=2

  β=2-α    ...(i)

 C(5-α, 2-α)

Now, -2-2α+β3=a

  -2-2α+β=3aβ-2α=3a+2

  2-α-2α=3a+2

   α=-aβ=2+a

Point B, C lies on x+py=21a

So, α-2αp=21a -a+2ap=21a 2ap=22a

  pa=11a    ...(ii)

   p=11, a=0 (rejected)

and β+3+pβ=21a

5+a+p(2+a)=21a 5+a+2p+pa=21a

5+a+2p+11a=21a 2p+5=21a-12a

  2p+5=9a2×11+5=9a                   a=3

  Point B is (-3,6) and C(8,5)

  BC=(8+3)2+(5-6)2(BC)2=122



Q 46 :

A triangle is formed by the X-axis, Y-axis and the line 3x+4y=60. Then the number of points P(a,b) which lie strictly inside the triangle, where a is an integer and b is a multiple of a, is ______ .          [2023]



(31)

For point P(a,b) to lie strictly inside the triangle 3a+4b<60

Also a is an integer and b is a multiple of a

  b=na  3a+4na<60

        a(3+4n)<60

When a=1, 3+4n<60, n can take values 1,,14

When a=2, 2(3+4n)<60n can take values 1,2,,6 i.e. 6 point

When a=3, 3(3+4n)<60n can take values 1,2,,4 i.e. 4 point 

When a=4, 4(3+4n)<60n can take values 1,2 i.e. 2 point

When a=5, 5(3+4n)<60n can take values 1,2 i.e. 2 point

When a=6, 6(3+4n)<601 point

When a=7, 7(3+4n)<601 point

When a=8, 8(3+4n)<601 point 

Total number of points=14+6+4+2+2+1+1+1=31



Q 47 :

A triangle is formed by the tangents at the point (2, 2) on the curves y2=2x and x2+y2=4x, and the line x+y+2=0. If r is the radius of its circumcircle, then r2 is equal to __________ .              [2023]



(10)

Given curve S1:y2=2x and S2:x2+y2=4x

Point P(2,2) is common on S1 and S2

T1 is tangent to S1 at P

T1:2y=x+2

T1:x-2y+2=0

      T2 is tangent to S2 at P

T2:2x+2y=2(x+2)

T2:y=2

      Line L3:x+y+2=0

Now, PQ=a=20, QR=b=8, RP=c=6

Area of PQR=Δ=12×6×2=6

  r=abc4Δ=1604=10, r2=10