Q 1 :    

Let PQ be a chord of the parabola y2=12x and the midpoint of PQ be at (4, 1). Then, which of the following point lies on the line passing through the points P and Q?          [2024]

  • (2, –9)

     

  • (32,16)

     

  • (12,20)

     

  • (3, –3)

     

(3)

y2=12x

Chord PQ having mid-point (x1,y1)(4,1)

Equation of chord PQ

T=S1

yy112(x+x1)2=y1212x1

 y6(x+4)=112×4

 y6x24=47  y6x+23=0

From the options, point (12,20) lies on the chord.



Q 2 :    

Let C be the circle of minimum area touching the parabola y=6x2 and the lines y=3|x|. Then, which one of the following points lies on the circle C?          [2024]

  • (1, 1)

     

  • (2, 4)

     

  • (2, 2)

     

  • (1, 2)

     

(*)

The given data is inadequate.



Q 3 :    

If the shortest distance of the parabola y2=4x from the centre of the circle x2+y24x16y+64=0 is d, then d2 is equal to :          [2024]

  • 16

     

  • 24

     

  • 20

     

  • 36

     

(3)

Circle x2+y24x16y+64=0

Centre  (2, 8), Radius = 2 units

Parabola : y2=4x

a = 1

Equation of normal at (t2,2t) of parabola:

xt+y=at3+2at

 xt+y=t3+2t         ... (i)

[Figure]

Since, normal passes through centre, then

2t+8=t3+2t          ... (ii)

t3=8

 t38=0

 (t2)(t2+4+2t)=0

 t=2     ( t0)

d = distance between (2, 8) and (4, 4) = 4+16=20

 d2=20.



Q 4 :    

Let the length of the focal chord PQ of the parabola y2=12x be 15 units. If the distance of PQ from the origin is p, then 10p2 is equal to __________.          [2024]



(72)

[Figure]

PQ=15  (3(t21t2))2+(6(t+1t))2=225

 9(t21t2)2+36(t+1t)2=225

 (t+1t)2[(t1t)2+4]=25

 (t+1t)2(t+1t)2=25  (t+1t)4=25

 t+1t=±5  (t-1t)=±1

 Equation of PQ(y6t)=(2tt21)(x3t2)

 Distance from y – 6t = mx3mt2, where m=2tt21

 p=|3mt26t|1+m2=|(6tt21)|5=65

 10p2=10×365=72.

 



Q 5 :    

Suppose AB is a focal chord of the parabola y2=12x of length l and slope m<3. If the distance of the chord AB from the origin is d, then ld2 is equal to __________.          [2024]



(108)

Equation of focal chord

y0=tanθ·(x3)

 tanθ·xy3 tanθ=0

  Distance from origin,

d=|3 tanθ1+tan2θ|

l =4×3 cosec2θ

l·d2=9 tan2θ1+tan2θ×12 cosec2θ

=108 cosec2θ1+cot2θ=108

 



Q 6 :    

Let a line perpendicular to the line 2xy = 10 touch the parabola y2=4(x9) at the point P. The distance of the point P from the centre of the circle x2+y214x8y+56=0 is __________.          [2024]



(10)

Let L : 2xy = 10 and C : y2=4(x9)

Equation of line perpendicular to L is given by

2y + x = k

Now, let us find the point of intersection of 2y + x = k and y2=4(x9)

i.e., (kx2)2=4(x9)

 x22(k+8)x+(k2+144)=0

As parabola touches the line so this quadratic equation must have at most one real root

 D=0

 4(k+8)24(k2+144)=0

 16k+64144=0

 k=5

So, equation becomes x226x+169=0

 (x13)2=0

 x=13

 y=±4

Now, parabola and line 2y + x = 5 meets at P(13, –4)

Now, centre of given circle is (7, 4)

  Required distance =(137)2+(44)2=10.



Q 7 :    

Let L1, L2 be the lines passing through the point P(0, 1) and touching the parabola 9x2+12x+18y14=0 . Let Q and R be the points on the lines L1 and L2 such that the PQR is an isosceles triangle with base QR. If the slopes of the lines QR are m1 and m2, then 16(m12+m22) is equal to __________.          [2024]



(68)

We have 9x2+12x+18y14=0

 9x2+12x+4+18y18=0

 (3x+2)2=18y+18

 (x+23)2=2(y1)

Vertex of parabola is (23,1)

Now, equation of line passing through (0, 1) is given by y = mx + 1.

Since the line is touching the parabola, so we have

(x+23)2=2mx

 (3x+2)2=18mx

 9x2+(12+18m)x+4=0

[Figure]

Discriminant of this quadratic equation must be zero.

 4(6+9m)2=4(36)

 6+9m=6  or  6

m=0, 43

  tan θ=43

 2 tan θ/21tan2 θ/2=43

 4+4 tan2 θ/26 tan θ/2=0

 2 tan2 θ/23 tan θ/22=0

(tanθ22)(2tanθ2+1)=0

 tanθ2=2, 12          ... (i)

Now, in PQR, P=θ so Q=R=90θ2

 mQR=tan(90+θ2)=cotθ2          [Using (i)]

 m1=12, m2=2

 16(m12+m22)=16(14+4)=68.



Q 8 :    

Let a conic C pass through the point (4, –2) and P(x, y), x3 be any point on C. Let the slope of the line touching the conic C only at a single point P be half the slope of the line joining the points P and (3, –5). If the focal distance of the point (7, 1) on C is d, then 12d equals __________.          [2024]



(75)

Slope of C at P=12(y+5x3) 

 dydx=12(y+5x3)  2dyy+5=1x3dx

On intergrating, we get

2 ln (y + 5) = ln (x – 3) + C

Since, C passes through (4, –2)

 2ln3=C

2ln(y+5)=ln(x3)+2ln3

 2ln(y+53)=ln(x3)  (y+53)2=x3

 (y+5)2=9(x3), which represent a parabola so, 4a = 9

 a=94

Focus =(3+94,5)=(214,5) 

  d=(2147)2+(51)2

         =(74)2+(6)2=254

 12d=254×12=75.



Q 9 :    

Let A, B and C be three points on the parabola y2=6x and let the line segment AB meet the line L through C parallel to the x-axis at the point D. Let M and N respectively be the feet of the perpendiculars from A and B on L. then (AM·BNCD)2 is equal to __________.          [2024]



(36)

Equation of parabola, y2=6x

i.e.,  y2=4×32x

Let  A(32t12, 3t1), B(32t22, 3t2) and C(32t32, 3t3)

be points on parabola y2=6x.

[Figure]

Equation of AB is given by

 (y3t1)=3t23t132(t22t12)(x32t12)

 y3t1=2t1+t2(2x3t12)2

 (y3t1)(t1+t2)=2x3t12

 y(t1+t2)3t123t1t2=2x3t12

 y(t1+t2)=2x+3t1t2

For point D, y=3t3

 2x=3t1t3+3t2t33t1t2

 x=32(t1t3+t2t3t1t2)

|CD|=32(t1t3+t2t3t1t2)32t32

|AM|=|3t13t3|, |BN|=|3t23t3|

So, (AM·BNCD)2=(9(t1t3)(t2t3)32(t1t3)(t3t2))2=(6)2=36.



Q 10 :    

Consider the circle C : x2+y2=4 and the parabola P : y2=8x. If the set of all values of α, for which three chords of the circle C on three distinct lines passing through the point (α, 0) are bisected by the parabola P is interval (p, q), then (2qp)2 is equal to __________.          [2024]



(80)

Equation of chord of parabola whose mid-point is (α, 0) is given by T=S1

 yy14(x+x1)=y128x1

i.e.,  4(x+α)=08α

 x=α

Equation of chord of circle with A(2t2, 4t) as mid-point is

xx1+yy14=x12+y124

 2t2x+4ty=4t4+16t2

Also, it passes through (α, 0)

 2t2α=4t2+16t2

 2α=4t2+16

 α=2t2+8=x0+8

Also, we have x2+y2=4 and y2=8x

 x2+8x4=0

 x0=8+802

 p=8  and  q=4+25

  (2qp)2=80.