Q 1 :    

A square is inscribed in the circle x2 + y2  10x  6y + 30 = 0. One side of this square is parallel to y = x + 3. If (xi, yi) are the vertices of the square, then (xi2, yi2) is equal to          [2024]

  • 160

     

  • 152

     

  • 156

     

  • 148

     

(2)

One side of square is y = x + k

Distance of (5, 3) to the line y = x + k is

|3  5  k|2 = 2

    |2  k| = 2      k = 0  or  k = 4

So lines are y = x and y = x – 4

Now, solving these lines with circle

y = x and x2 + y2  10x  6y + 30 = 0

    2x2  16x + 30 = 0

    x = 3, y = 3 and x = 5, y = 5

and y = x – 4 and x2 + y2  10x  6y + 30 = 0

    x = 5, y = 1 and x = 7, y = 3

i = 14 xi2 + yi2 = 9 + 9 + 25 + 25 + 25 + 1 + 49 + 9 = 152.



Q 2 :    

Let C be a circle with radius 10 units and centre at the origin. Let the line x + y = 2 intersects the circle C at the points P and Q. Let MN be a chord of C of length 2 units and slope –1. Then a distance (in units) between the chord PQ and the chord MN is          [2024]

  • 3  2

     

  • 2  3

     

  • 2 + 1

     

  • 2  1

     

(1)

Distance of centre from chord PQ =|0 + 0 212 + 12|= 22 = 2

Let distance of centre from chord MN = p, then length of chord = 210  p2

    210  p2 = 2            (   Given)

    10  p2 = 1      p2 = 9      p = 3

    Distance between chord PQ and MN = 3  2.



Q 3 :    

Let a circle C of radius 1 and closer to the origin be such that the lines passing through the point (3, 2) and parallel to the coordinate axes touch it. Then the shortest distance of the circle C from the point (5, 5) is:          [2024]

  • 22

     

  • 42

     

  • 4

     

  • 5

     

(3)

Centre of circle = (2, 1)

   Equation of circle will be

(x  2)2 + (y  1)2 = 1

Distance between C(2, 1) and P(5, 5)

= (2  5)2 + (1  5)2

= 5 units

Also, AC = BC = 1 unit               [   Radius = 1]

   Shortest distance of circle from P = 5 – 1 = 4 units.



Q 4 :    

Let the circle C1 : x2 + y2  2(x + y) + 1 = 0 and C2 be a circle having centre at (–1, 0) and radius 2. If the line of the common chord of C1 and C2 intersects the y-axis at the point P, then the square of the distance of P from the centre of C1 is:          [2024]

  • 2

     

  • 6

     

  • 4

     

  • 1

     

(1)

We have,  C1 : x2 + y2  2(x + y) + 1 = 0

                 C2 : (x + 1)2 + y2  4 = 0

For common chord, we have C1  C2 = 0

   x2 + y2 2x  2y + 1  x2  y2  2x + 3 = 0

   4x  2y + 4 = 0

   2x + y  2 = 0

Since, common chord intersects y-axis

So,  x = 0

  y = 2

So, point of intersection of common chord with y-axis is P(0, 2).

Required distance = ((1  0)2 + (1  2)2)2 = 2.



Q 5 :    

Let ABCD and AEFG be squares of sides 4 and 2 units respectively. the point E is on the line segment AB and the point F is on the diagonal AC. Then the radius r of the circle passing through the point F and touching the line segments BC and CD satisfies :          [2024]

  • 2r2  4r + 1 = 0

     

  • r2  8r + 8 = 0

     

  • r = 1

     

  • 2r2  8r + 7 = 0

     

(2)

Let r be the radius of circle and centre at C(r, r).

Then, FC2 = r2

   (r 2)2 + (r  2)2 = r2 

   r2  8r + 8 = 0.



Q 6 :    

Let the circles C1 : (xα)2+(yβ)2=r12 and C2 : (x8)2+(y152)2=r22 touch each other externally at the point (6, 6). If the point (6, 6) divides the line segment joining the centres of the circles C1 and C2 internally in the ratio 2 : 1, then (α+β)+4(r12+r22) equals          [2024]

 

  • 110

     

  • 125

     

  • 145

     

  • 130

     

(4)

B(α, β), C(8,152) are the centres of circle C1 and C2 respectively. Now, A(6, 6) is the given point.

A divides BC in ratio 2 : 1

 16+α3=6  and  15+β3=6

 α=2 and β=3

Also, BC¯=r1+r2  r1+r2=(28)2+(3152)2

 2r2+r2=36+814              [ r1 : r2=2 : 1]

 3r2=152  r2=52 units  r1=5 units

   (α+β)+4(r12+r22)=5+4(25+254)=130.



Q 7 :    

If the image of the point (–4,5) in the line x + 2y = 2 lies on the circle (x+4)2+(y3)2=r2, then r is equal to :          [2024]

  • 1

     

  • 4

     

  • 3

     

  • 2

     

(4)

x+41=y52=2(4+2×52)1+4=85

 x=485= 285, y=5165=95

  Image is (285,95)

Image lies on circle (x+4)2+(y3)2=r2

(285+4)2+(953)2=r2

 6425+3625=r2  r2=4  r=2



Q 8 :    

Let a circle passing through (2,0) have its centre at the point (h, k). Let (xc,yc) be the point of intersection of the lines 3x + 5y = 1 and (2+c)x+5c2y=1. If h=limc1xc and k=limc1yc, then the equation of the circle is :          [2024]

  • 5x2+5y24x+2y12=0

     

  • 5x2+5y24x2y12=0

     

  • 25x2+25y220x+2y60=0

     

  • 25x2+25y22x+2y60=0

     

(3)

We have, 3x + 5y = 1          ... (i)

  (2+c)x+5c2y=1       ... (ii)

Multiplying (i) by c2 and subtracting it from (ii), we get

(2+c3c2)x=1c2

 xc=1c22+c3c2=(1c)(1+c)(1c)(3c+2)=c+13c+2

 y=13x5=13(c+13c+2)5=3c+23c35(3c+2)

 yc=15(3c+2)

Now, h=limc1xc=limc1(c+13c+2)=1+13+2=25

and k=limc1yc=limc115(3c+2)=125

Equation of circle is

(x25)2+(y+125)2=6425+1625              [ Circle passes through (2, 0)]

 x2+y245x+225y+425+1625=6425+1625

 25x2+25y220x+2y+4=64

 25x2+25y220x+2y60=0



Q 9 :    

Let C : x2+y2=4 and C' : x2+y24λx+9=0 be two circles. If the set of all values of λ so that the circles C and C' intersect at two distinct points, is R – [a, b], then the point (8a + 12, 16b – 20) lies on the curve :          [2024]

  • x24y2=7

     

  • 6x2+y2=42

     

  • 5x2y=11

     

  • x2+2y25x+6y=3

     

(2)

We have, C : x2+y2=4                         ... (i)

and C' : x2+y24λx+9=0

 C' : (x2λ)2+y2=4λ29           ... (ii)

Radius of C, r1=2 and radius of C', r2=4λ29

When two circles intersect at two points,

then |r1r2|<CC'<|r1+r2|

|24λ29|<2λ<2+4λ29              ...(iii)

By (iii), we have 4+4λ2944λ29<4λ2

 544λ29<0

 5+44λ29>0  4λ29>54

On Squaring both sides, we get

4λ29>2516  4λ2>16916  λ2>16964

 λ>138  or  λ<138

 λ(,138)(138,)

Also, 4λ2<(2+4λ29)2           [By (iii)]

 4λ2<4+44λ29+4λ29

 0<5+44λ29  5<44λ29

On squaring, we get

2516<4λ29  16964<λ2

 λ(,138)(138,)

Thus, Circles C and C' intersect at two distinct points for

λR[138,138]

 a=138, b=138

  (8a + 12, 16b –20) = (–1, 6) which satisfies only 6x2+y2= 42.



Q 10 :    

Let the locus of the midpoints of the chords of the circle x2+(y1)2=1 drawn from the origin intersect the line x + y = 1 at P and Q. Then, the length of PQ is :          [2024]

  • 12

     

  • 1

     

  • 12

     

  • 2

     

(3)

Let (x1,y1) be the mid point of chords.

So, equation of chord of the circle x2+y2 2y=0 is,

x·x1+y·y1(y+y1)=x12+y122y1

The chord is passing through origin

  y1=x12+y122y1

        x12+y12y1=0               ... (i)

Now, (i) intersects the line x + y = 1

 (1y1)2+y12y1=0

 1+y122y1+y12y1=0  2y123y1+1=0

 (2y11)(y11)=0  y1=12  or  y1=1

If y1=12, then x1=12                [From (i)]

If y = 1, then x1=0

So, P=(12,12) and Q = (1, 0)    PQ=(12)2+(12)2=12