Q 1 :    

Let the line 2x + 3yk = 0, k > 0, intersect the x-axis and y-axis at the points A and B, respectively. If the equation of the circle having the line segment AB as a diameter is x2+y23x2y=0 and the length of the latus rectum of the ellipse x2+9y2=k2 is mn, where m and n are coprime, then 2m + n is equal to          [2024]

  • 10

     

  • 13

     

  • 12

     

  • 11

     

(4)

Equation of circle with AB as diameter is

(xk2)x+y(yk3)=0

 x2+y2kx2ky3=0

[Figure]

On comparing it with given equation x2+y23x2y=0

we get k2=3  k=6

Now, equation of ellipse is given by

x2+y2=36

 x236+y24=1

So latus rectum 2b2a=2×46=43=mn

 2m+n=2×4+3=11.



Q 2 :    

Let f(x) = x2 + 9, g(x) = xx  9 and a = fog (10), b = gof (3). If e and l denote the eccentricity and the length of the latus rectum of the ellipse x2a+y2b=1, then 8e2 + l2 is equal to          [2024]

  • 6

     

  • 12

     

  • 16

     

  • 8

     

(4)

We have, g(x)=xx9 so, g(10) = 10

Also f(x)=x2+9 so, f(10)=102+9=109

a=fog(10)=f(g(10))=f(10)=109

Also, f(3)=32+9=18

Now, b=gof(3)=g(f(3)=g(18)=18189=2

So ellipse x2a+y2b=1 becomes x2109+y22=1

  e=12109=107109

and l =2b2a=2×2109=4109

Hence, 8e2 + l2 =8×107109+16109=8.



Q 3 :    

Let x2a2+y2b2=1, a > b be an ellipse, whose eccentricity is 12 and the length of the latusrectum is 14. Then the square of the eccentricity of x2a2y2b2=1 is:          [2024]

  • 3

     

  • 3/2

     

  • 7/2

     

  • 5/2

     

(2)

x2a2+y2b2=1, a>b

e=12  1b2a2=12  1b2a2=12  b2a2=12

x2a2y2b2=1:  e2=1+b2a2=1+12=32



Q 4 :    

Let P be a point on the ellipse x29+y24=1, Let the line passing through P and parallel to y-axis meet the circle x2+y2=9 at point Q such that P and Q are on the same side of the x-axis. then, the eccentricity of the locus of the point R and PQ such that PR : RQ = 4 : 3 as P moves on the ellipse, is          [2024]

  • 1321

     

  • 13923

     

  • 137

     

  • 1119

     

(3)

As, P be a point on the ellipse.

  Coordinates of P = (3 cos θ, 2 sin θ)

Also, Q is a point of the circle 

  Coordinates of Q (3 cos θ, 3 sin θ)

Now, R(h, k) divides the line PQ in the ratio 4 : 3.

  h=12 cos θ+9 cos θ7=21 cos θ7=3 cos θ

and k=12 sin θ+6 sin θ7=187sin θ

Now, h29+49k2324=1

So, locus of R, x232+y2(18/7)2=1 is ellipse.

  Eccentricity 1(18/7)29=1349=137.



Q 5 :    

The length of the chord of the ellipse x225+y216=1, whose mid point is (1, 25), is equal to :          [2024]

  • 15415

     

  • 16915

     

  • 17415

     

  • 20095

     

(2)

Ellipse : x225+y216=1            ... (i)

Equation of chord having mid point (x1, y1) is

xx1a2+yy1b2=x12a2+y12b2

 x25+y16(25)=125+116(425)  x25+y40=125+1100

 8x+5y=10

 8x=5(2y)            ...(ii)

From equation (i) & (ii), we get

x=1±192,  y=25(1219)

Length of Chord

=[1+192(1192)]2+[25(1219)25(1+219)]2

=19+6425×19=16915



Q 6 :    

If the length of the minor axis of an ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :           [2024]

  • 53

     

  • 25

     

  • 32

     

  • 13

     

(2)

Let x2a2+y2b2=1 be the given ellipse

We have, minor axis 12(2ae), where e is eccentricity

 2b=ae  4b2=a2e2

 4b2=a2b2          [  b2=a2a2e2]

 5b2=a2

Now, e=1b2a2=115=45=25



Q 7 :    

Let A(α, 0) and B(0, β) be the points on the line 5x + 7y = 50. Let the point P divide the line segment AB internally in the ratio 7 : 3. Let 3x – 25 = 0 be a directrix of the ellipse E : x2a2+y2b2 = 1, and the corresponding focus be S. If from S, the perpendicular on the x-axis passes through P, then the length of the latus rectum of E is equal to,          [2024]

  • 325

     

  • 329

     

  • 259

     

  • 253

     

(1)

[Figure]

A(α, 0) and B(0, β) be the points on the line 5x + 7y = 50

 α=10  and  β=507

Using section formula, we have P(3, 5).

Directrix : x=253=ae

The equation of the line passing through P(3, 5) and perpendicular to x-axis is x = 3.

  The perpendicular is also passes through S.

  ae = 3

a×325a=3  or  a2=25  a=5

b2=25(1925)=16

  Length of latus rectum =2b2a=2×165=325.



Q 8 :    

Let P be a parabola with vertex (2, 3) and directrix 2x + y = 6. Let an ellipse E : x2a2+y2b2=1, a > b of eccentricity 12 pass through the focus of the parabola P. Then the square of the length of the latus rectum of E is          [2024]

  • 3858

     

  • 65625

     

  • 3478

     

  • 51225

     

(2)

Given that vertex of parabola P is (2, 3) and equation of directrix is 2x + y = 6       ... (i)

Let S(α, β) be the focus of parabola.

[Figure]

Equation of axis of AS is

y3=12(x2)

 2y6=x2

 x2y+4=0            ... (ii)

Solving equations (i) and (ii), we get

  x=85  and  y=145       A(85,145)

Now, using mid point formula, we have

85+α2=2;  145+β2=3    85+α=4;  145+β=6

 α=485  and  β=6145    α=125;  and  β=165

The point S(125,165) will satisfy the ellipse.

  14425a2+25625b2=1          ... (iii)

Now, b2=a2(1e2)

b2=a2(112)

  From (iii), 14425×2b2+25625b2=1

 7225+25625=b2    b2=32825        a2=2×32825=56525

  Length of latus rectum =2b2a=2×32825×6565=656×525×656=5655

  Square of the latus rectum =65625.



Q 9 :    

If the points of intersection of two distinct conics x2 + y2 = 4b and x216 + y2b2 = 1 lie on the curve y2 = 3x2, then 33 times the area of the rectangle formed by the intersection points is _________.          [2024]



(432)

We have, x2+y2=4b        ... (i)

and x216+y2b2=1           ... (ii)

From (i) and (ii), x2=16bb+4 and y2=4b2b+4

  These points lie on curve y2=3x2.

So, 4b2b+4=3×16bb+4

 b2=12b    b(b12)=0

 b=12(b0)

So, the points are (±23,±6)

   Area of rectangle 43×12=483 sq. units

Thus, 33 times of the area of rectangle =33×483=432.