Q 41 :

The set of all values of a2 for which the line x+y=0 bisects two distinct chords drawn from a point P(1+a2,1-a2) on the circle 2x2+2y2-(1+a)x-(1-a)y=0,is equal to              [2023]

  • (8,)

     

  • (0,4]

     

  • (4,)

     

  • (2,12]

     

(1)



Q 42 :

Let the point (p,p+1) lie inside the region E={(x,y):3-xy9-x2, 0x3}. If the set of all values of p is the interval (a,b), then b2+b-a2 is equal to _____ .          [2023]



(3)

Given, 3-xy9-x2

3-xyx+y-30  (i)

y9-x2x2+y29

Now, (p,p+1) lies inside the region E.       p+p+1-30

p1 and p2+(p+1)29

2p2+2p-80  p2+p-40

p(-(1+17)2,17-12)

  p(1,17-12)    (as p1)

a=1, b=17-12   b2+b-a2=3



Q 43 :

A circle passing through the point P(α,β) in the first quadrant touches the two coordinate axes at the points A and B. The point P is above the line AB. The point Q on the line segment AB is the foot of perpendicular from P on AB. If PQ is equal to 11 units, then the value of αβ is ________.         [2023]



(121)

Let the equation of the circle be

(x-a)2+(y-a)2=a2,

It passes through P(α,β)

   (α-a)2+(β-a)2=a2

 α2+β2-2aα-2aβ+a2=0                ...(i)

Here, the equation of line AB is x+y=a

Let Q(α',β') be the foot of the perpendicular from P on AB

  α'-α1 =β'-β1=-(α+β-a)2

(PQ)2=(α'-α)2+(β'-β)2=14(α+β-a)2+14(α+β-a)2

(11)2=12(α+β-a)2

242=α2+β2+a2+2αβ-2aα-2aβ

242=2αβ                                                           [From (i)]

αβ=121



Q 44 :

Consider a circle C1:x2+y2-4x-2y=α-5. Let its mirror image in the line y=2x+1 be another circle C2:5x2+5y2-10fx-10gy+36=0. Let r be the radius of C2. Then α+r is equal to _______ .         [2023]



(2)

We have,

       C1:x2+y2-4x-2y-(α-5)=0

   Centre is (2,1), r=4+1+α-5=α

        C2:5x2+5y2-10fx-10gy+36=0

i.e., x2+y2-2fx-2gy+365=0

Centre is (f,g), r=f2+g2-365

The image of (2,1) with respect to 2x-y+1=0 is (f,g),

then f-22=g-1-1=-2(4-1+1)5

f-22=-85 and g-1=85

f-2=-165 and g-1=85

f=2-165=-65 and g=135

So, (f,g)=(-65,135)

and r=3625+16925-365r=1

r=1  

  α+r=1+1=2



Q 45 :

Two circles in the first quadrant of radii r1 and r2 touch the coordinate axes. Each of them cuts off an intercept of 2 units with the line x+y=2. Then r12+r22-r1r2 is equal to _______ .          [2023]



(7)

 

 



Q 46 :

Points P(-3, 2), Q(9, 10) and R(α, 4) lie on a circle C with PR as its diameter. The tangents to C at the points Q and R intersect at the point S. If S lies on the line 2x-ky=1, then k is equal to ______ .          [2023]



(3)

Since PQQR, so mPQ·mQR=-1

10-29+3×10-49-α=-1α=13

Since QOQS, so mOQ·mQS=-1 mQS=-47

Equation of QS: y-10=-47(x-9)4x+7y=106    (i)

Since ORSR

            mOR·mRS=-1

mRS=-8

Equation of RS: y-4=-8(x-13)

8x+y=108    (ii)

Solving (i) and (ii)

         x=252, y=8

Since S(x,y) lies on the line 2x-ky=1

       25-8k=18k=24k=3



Q 47 :

A circle with centre (2, 3) and radius 4 intersects the line x+y=3 at the points P and Q. If the tangents at P and Q intersect at the point S(α,β), then 4α-7β is equal to ______ .                    [2023]



(11)

The equation of circle can be written as,

(x-2)2+(y-3)2=42 x2+y2-4x-6y-3=0

Chord of contact at (α,β) is

αx+βy-2(x+α)-3(y+β)-3=0

(α-2)x+(β-3)y-(2α+3β+3)=0     ...(i)

  But the equation of chord of contact is given:    

        x+y-3=0     ...(ii)

Comparing equations (i) and (ii):

α-21= β-31=-(2α+3β+3-3)

On solving, α=-6, β=-5

So, 4α-7β =4(-6)-7(-5) =11



Q 48 :

Let P(a1,b1) and Q(a2,b2) be two distinct points on a circle with center C(2,3). Let O be the origin and OC be perpendicular to both CP and CQ. If the area of the triangle OCP is 352, then a12+a22+b12+b22 is equal to ________ .         [2023]



(24)

Area of OCP=352

12×PC×OC=352

12×PC×5=352

PC=7

Now, OQ2=5+7=12

            OP2=5+7=12

             a12+b12=OP2 and a22+b22=OQ2

   a12+a22+b12+b22 =OP2+OQ2 =12+12=24