Q 31 :    

Let a tangent to the curve y2=24x meet the curve xy=2 at the points A and B. Then the mid-points of such line segments AB lie on a parabola with the        [2023]

  • length of latus rectum 3/2

     

  • length of latus rectum 2

     

  • directrix 4x = 3

     

  • directrix 4x = - 3

     

(3)

Let the equation of tangent to y2=24x  is ty=x+6t2

Now, ty=x+6t2 meets the curve xy=2  at points A and B.

Let mid-point of AB be (h,k)

ty=2y+6t2               [x=2y]

ty2-6t2y-2=0

y1+y2=6t

t·2x=x+6t2          [y=2x]

x2+6t2x-2t=0

x1+x2=-6t2

Midpoint P is (-3t2,3t)

h=-3t2, k=3t (h-3)=(k3)2y2=-3x



Q 32 :    

The equations of the sides AB and AC of a triangle ABC are (λ+1)x+λy=4 and λx+(1-λ)y+λ=0 respectively. Its vertex A is on the y-axis and its orthocentre is (1, 2). The length of the tangent from the point C to the be part of the parabola y2=6x in the first quadrant is               [2023]

  • 22

     

  • 2

     

  • 6

     

  • 4

     

(1)

AB:(λ+1)x+λy=4

AC:λx+(1-λ)y+λ=0

Since vertex A is on y-axis x=0

So, y=4λ and y=λλ-1
4λ=λλ-1λ=2

AB:3x+2y=4

AC:2x-y+2=0A(0,2)

Let coordinates of C be (α,2α+2).

Now, [slope of altitude through C]×(-32)=-1

(2αα-1)(-32)=-1α=-12

So, coordinates of C are (-12,1).

Equation of tangent be y=mx+32m

  m=1,-3

So, tangent which touches in first quadrant at T is  

T(am2,2am)(32,3)

  CT=(32+12)2+(3-1)2=4+4=22



Q 33 :    

The equations of two sides of a variable triangle are x=0 and y=3, and its third side is a tangent to the parabola y2=6x. The locus of its circumcentre is     [2023]

  • 4y2-18y+3x+18=0

     

  • 4y2-18y-3x+18=0

     

  • 4y2+18y+3x+18=0

     

  • 4y2-18y-3x-18=0

     

(1)

Equation of the parabola is y2=6x.

Here 4a=6

         a=32

Equation of tangent is y=mx+am



y=mx+32m                              ...(i)

Putting x=0 in (i), we get A(0,32m)

Putting y=3 in (i), we get B(6m-32m2,3)

The centre of the circle will lie on the line AB as midpoint.

   h=6m-34m2, k=3+6m4mm=34k-6

On substituting h=6m-34m2 to eliminate m, we get 3h=2(-2k2+9k-9)

4k2-18k+3h+18=0

So, locus is 4y2-18y+3x+18=0



Q 34 :    

If the tangent at a point P on the parabola y2=3x is parallel to the line x+2y=1and the tangents at the points Q and R on the ellipse x24+y21=1 are perpendicular to the line x-y=2, then the area of the triangle PQR is               [2023]

  • 35

     

  • 95

     

  • 325

     

  • 53

     

(1)

If tangent at a point P on y2=3x is parallel to the line x+2y=1 and tangent at point Q and R on ellipse x24+y21=1 are perpendicular to the line x-y=2.

Firstly we have equation of parabola y2=3x  (i)

Tangent at P(x1,y1) is parallel to x+2y=1

        2y=1-x

        y=-x2+12

{On comparing it with y=mx+C}

Then slope, m at P=-12  (ii)

On differentiating equation (i) with respect to 'x'

           2y·dydx=3  dydx=32y=-12  (from (ii))

y1=-3

Co-ordinates of P are (3,-3).

Similarly, Q(45,15), R(-45,-15)

So, we have three points P, Q and R by which area of PQR

=12|3-3145151-45-151|                      {Area of is given as=12|x1y11x2y21x3y31|}

=3025=35

Hence, the area of PQR=35.



Q 35 :    

If P(h,k) be a point on the parabola x=4y2, which is nearest to the point Q(0, 33), then the distance of P from the directrix of the parabola y2=4(x+y) is equal to        [2023]

  • 4

     

  • 2

     

  • 8

     

  • 6

     

(4)

We have x=4y2

Equation of normal at P(h,k)

y-k=-k(18)(x-h)

y-k=-8k(x-h)

This line passes through the point (0,33).

33-k=8kh                                                  ...(i)

P(h,k) will satisfy x=4y2, so h=4k2.      ...(ii)

Solving equations (i) and (ii), we get  

         k=1 and h=4

  (h,k)(4,1)

Now we have equation of parabola, y2=4(x+y)(y-2)2=4(x+1)

The directrix of this parabola is x=-2

This is the line parallel to the y-axis.

So, distance of P(4,1) from the line x=-2 is 6.



Q 36 :    

The parabolas : ax2+2bx+cy=0 and dx2+2ex+fy=0 intersect on the line y=1. If a,b,c,d,e,f are positive real numbers and a,b,c are in G.P., then      [2023]

  • da,eb,fc are in G.P.

     

  • d,e,f are in A.P.

     

  • d,e,f are in G.P.

     

  • da,eb,fc are in A.P.

     

(4)

ax2+2bx+cy=0                         ...(i)

and dx2+2ex+fy=0                 ...(ii)

Equation (i) and (ii) intersect at (α,1).

   aα2+2bα+c=0                  ...(iii)

        dα2+2eα+f=0                    ...(iv)

Roots of equation (iii):

α=-2b±4b2-4ac2a=-ba    [a,b,c are in G.P.b2=ac]

α is also a root of equation (iv)

  d(-ba)2+2e(-ba)+f=0da+fc=2eb

  da,eb and fc are in A.P.



Q 37 :    

Let A be a point on the x-axis. Common tangents are drawn from A to the curves x2+y2=8 and y2=16x. If one of these tangents touches the two curves at Q and R, then (QR)2 is equal to             [2023]

  • 76

     

  • 81

     

  • 72

     

  • 64

     

(3)

Given curves are x2+y2=8 and y2=16x

Equation of tangent to the parabola in slope form is:

     y=mx+axy=mx+4m

Length of perpendicular from (0, 0) to the point of tangency is equal to the length of radius of circle.

  |4m1+m2|=8  |1m1+m2|=12

m2(1+m2)=2 m4+m2-2=0

(m2+2)(m2-1)=0     m=±1

Point of contact on parabola = (am2,2am)=(4,±8)

Point of contact on circle is (-2,2) or (2,-2)

Distance between Q(-2,2) and R(4,8) is QRQR2=72



Q 38 :    

Let y=f(x) represent a parabola with focus (-12,0) and directrix y=-12. Then S={x: tan-1(f(x))+sin-1(f(x)+1)=π2}:        [2023]

  • is an empty set

     

  • contains exactly one element

     

  • contains exactly two elements

     

  • is an infinite set

     

(3)

Equations of parabola, (x+12)2+(y-0)2=|y+12| x2+14+x+y2=y2+14+y

x2+x=y=f(x)  (let)

Now, tan-1f(x)+sin-1f(x)+1=π2

cos-111+f(x)+sin-1f(x)+1=π2

We know, sin-1x+cos-1x=π2,

11+f(x)=f(x)+1f(x)+1=1f(x)=0

x2+x=0x(x+1)=0x=0,-1S={-1,0}



Q 39 :    

Let the tangent to the curve x2+2x-4y+9=0 at the point P(1, 3) on it meet the y-axis at A. Let the line passing through P and parallel to the line x-3y=6 meet the parabola y2=4x at B. If B lies on the line 2x-3y=8, then (AB)2 is equal to ________ .          [2023]



(292)

Equation of tangent at P(1, 3) to the curve x2+2x-4y+9=0 is

x·1+2(1+x2)-4(3+y2)+9=0

x+1+x-6-2y+9=0

2x-2y+4=0y-x=2

So, the point A is (0,2).

Equation of line passing through P and parallel to x-3y=6 is x-3y=d.

Point (1,3) lies on this line.

  1-9=dd=-8

So, equation of line is x-3y=-8.

Now, x-3y=-8 meets the parabola y2=4x at B.

So, x+83=y(x+83)2=4xx2+16x+64=36x

x2-16x-4x+64=0x=4,16           y=4,8

So, the possible coordinates of B are (4,4) or (16,8).

But (4,4) doesn't lie on the line 2x-3y=8.

Thus, point B is (16,8).

  AB2=(16-0)2+(8-2)2=256+36=292



Q 40 :    

The ordinates of the points P and Q on the parabola with focus (3, 0) and directrix x=-3 are in the ratio 3 : 1. If R(α,β) is the point of intersection of the tangents to the parabola at P and Q, then β2α is equal to _______.           [2023]



(16)

Parabola is y2=12x

Let Q(3t2,6t)

So, P(27t2,18t)

Now, R(α,β)=(at1t2, a(t1+t2))

=(3t·3t, 3(t+3t))=(9t2,12t)

R(α,β)=(9t2,12t)β2α=(12t)29t2=1449=16