Q 31 :

A line segment AB of length λ moves such that the points A and B remain on the periphery of a circle of radius λ. Then the locus of the point that divides the line segment AB in the ratio 2 : 3, is a circle of radius             [2023]

  • 195λ    

     

  • 23λ    

     

  • 197λ    

     

  • 35λ

     

(1)

OAP=60°                          [ OA=OB=AB=λ]

AP=2λ5  (Given)

cos60°=OA2+AP2-OP22·OA·AP

12=λ2+4λ225-OP22λ·2λ5

2λ25=29λ225-OP2OP2=2925λ2-25λ2=1925λ2

Required locus is x2+y2=1925λ2

   Radius=195λ



Q 32 :

Let A be the point (1, 2) and B be any point on the curve x2+y2=16. If the centre of the locus of the point P, which divides the line segment AB in the ratio 3 : 2, is the point  C(α,β), then the length of the line segment AC is          [2023]

  • 255

     

  • 355

     

  • 655

     

  • 455

     

(2)

Since, P(h,k) divides AB in the ratio 3:2.

So, 12cosθ+25=h and 12sinθ+45=k

12cosθ=5h-2                                        ...(i)

and 12sinθ=5k-4                                      ...(ii)

Squaring (i) and (ii) and then adding, we get  

144=(5h-2)2+(5k-4)2

(x-25)2+(y-45)2=14425

Centre (25,45)C(α,β)

AC=(1-25)2+(2-45)2 =925+3625=355



Q 33 :

Let the centre of a circle C be (α,β) and its radius r<8. Let 3x+4y=24 and 3x-4y=32 be two tangents and 4x+3y=1 be a normal to C. Then (α-β+r) is equal to               [2023]

  • 6

     

  • 5

     

  • 7

     

  • 9

     

(3)

After solving 4x+3y=1 and 3x-4y=32, Point A is (4,-5)

Centre (α,β) lies on the line 4x+3y=1

So, 4α+3β=1

   β=1-4α3

Now, distance from Centre to line 3x-4y-32=0 and 3x+4y-24=0 are equal.

So, |3α-4(1-4α3)-3232+42|=|3α+4(1-4α3)-245|

  |3α-4(1-4α3)-325|=|3α+4(1-4α3)-245|

  |9α-4+16α-9615|=|9α+4-16α-7215|

 25α-100=±(-7α-68)

  α=1 and α=283

For α=1, Centre is (1,-1)

and radius is  (4-1)2+(-5+1)2=5 units

For α=283β=-1099, Centre (283,-1099)

  radius≃8.88 (rejected)

Hence, α=1, β=-1, r=5

   α-β+r=7



Q 34 :

The number of common tangents to the circles x2+y2-18x-15y+131=0 and x2+y2-6x-6y-7=0, is          [2023]

  • 2

     

  • 3

     

  • 4

     

  • 1

     

(2)

C1:x2+y2-18x-15y+131=0

C2:x2+y2-6x-6y-7=0

We know that for equation of circle  

x2+y2+2gx+2fy+C=0

Centre is (-g,-f) and radius =g2+f2-C

For C1, Centre (A)=(9,152)

and radius (r1)=81+2254-131=254=52

For C2, Centre (B)=(3,3)

and radius (r2)=9+9+7=5

and AB=(6)2+(92)2=36+814=2254=152=r1+r2

  There are 3 common tangents



Q 35 :

The area enclosed by the closed curve C given by the differential equation dydx+x+ay-2=0, y(1)=0 is 4π. Let P and Q be the points of intersection of the curve C and the y-axis. If normals at P and Q on the curve C intersect the x-axis at points R and S respectively, then the length of the line segment RS is       [2023]

  • 433

     

  • 233

     

  • 2

     

  • 23

     

(1)

dydx+x+ay-2=0, y(1)=0;    dydx=-(x+a)y-2

(y-2)dy=-(x+a)dxy22-2y=-x22-ax+c

x2+y22+ax-2y=cx2+y2+2ax-4y=c1    (c1=2c)

Substituting x=1 and y=0 as y(1)=0

1+2a=c1     x2+y2+2ax-4y=1+2a

This represents the equation of a circle having area 4π

 Radius of circle=2

Now r2=22=(-a)2+(2)2=1+2a

0=(a+1)2  a=-1

  Equation of circle is  x2+y2-2x-4y=-1

 x2-2x+1+y2-4y+4-4=0

 (x-1)2+(y-2)2=4

Now, substitute x=0 to get intersection point of circle with y-axis

(y-2)2=3

y=±3+2      P(0,±3+2)

P(0,±3+2) and Q(0,2-3) are the points.

Now normal at P will pass through centre (1,2)

  Equation of line passing through P and (1,2) is

y-(3+2)=-31(x)

Now, this line will cut x-axis at  R(3+23,0)

Also, equation of line passing through Q(0,2-3)  and (1,2) is y-(2-3)=3x

This will cut the x-axis at  S(3-23,0)

RS=(3+23-3-23)2+(0-0)2=(43)2=43=433



Q 36 :

The locus of the mid points of the chords of the circle C1:(x-4)2+(y-5)2=4 which subtend an angle θi at the centre of the circle C1, is a circle of radius ri. If θ1=π3,θ3=2π3 and r12=r22+r32, then θ2 is equal to            [2023]

  • π2

     

  • π4

     

  • π6

     

  • 0-π4

     

 (1)

If a chord of circle of radius R subtends angle θi at the centre C1, then locus of the end point of this chord in a circle of radius

ri=Rcos(θi2)

Given, r12=r22+r32

cos2θ12=cos2θ22+cos2θ32

cos2π6=cos2θ22+cos2π3

34=cos2θ22+14

cos2θ22=12cosθ22=12θ22=π4θ2=π2



Q 37 :

The points of intersection of the line ax+by=0(ab) and the circle x2+y2-2x=0 are A(α,0) and B(1,β). The image of the circle with AB as a diameter in the line x+y+2=0 is                [2023]

  • x2+y2+3x+3y+4=0

     

  • x2+y2+5x+5y+12=0

     

  • x2+y2+3x+5y+8=0

     

  • x2+y2-5x-5y+12=0

     

(2)

Clearly the line and circle intersect at (0, 0)  

α=0

(1,β) lies on the circle  

1+β2-2×1=0 β2=1 β=±1

Let β=-1

(1, -1) should lie on the line  

a-b=0a=b but ab

Therefore β=1.  

The line and circle intersect at (0, 0) and (1, 1).

Centre of circle with diameter AB is (12,12)

Radius of circle=12, where A(0,0) and B(1,1)

Let (p, q) be the mirror image of (12,12) w.r.t. x+y+2=0

p-1/21=q-1/21=-2(12+12+2)2=-3p=-52, q=-52

(p, q) is centre of required circle whose equation is  

(x+52)2+(y+52)2=12x2+y2+5x+5y+252-12=0

x2+y2+5x+5y+12=0



Q 38 :

Let the tangents at the points A(4,-11) and B(8,-5) on the circle x2+y2-3x+10y-15=0, intersect at the point C. Then the radius of the circle whose centre is C and the line joining A and B is its tangent, is equal to           [2023]

  • 213    

     

  • 2133    

     

  • 13    

     

  • 334

     

(2)

Equation of tangent at point A(4,-11) is

4x-11y-32(x+4)+5(y-11)-15=0

5x-12y=152                                 ...(i)

Equation of tangent at point B(8,-5) is

8x-5y-32(x+8)+5(y-5)-15=0

x=8                                                ...(ii)

Solving (i) and (ii) we get

          x=8 and y=-283

So, point C is (8,-283) and this point is centre of circle whose tangent is line AB.

Equation of line AB is, 3x-2y=34

Perpendicular distance of point C from line AB gives the radius of another circle whose centre is  C(8,-283).

So, |3×8-2(-283)-34|32+(-2)2=2133



Q 39 :

Let y=x+2, 4y=3x+6 and 3y=4x+1 be three tangent lines to the circle (x-h)2+(y-k)2=r2. Then h+k is equal to      [2023]

  • 5

     

  • 5(1+2)

     

  • 6

     

  • 52

     

(1)

We have equation of circle (x-h)2+(y-k)2=r2

We know that the perpendicular distance from centre to the tangent is equal to radius of the circle.

L1:x-y+2=0; L2:3x-4y+6=0; L3:4x-3y+1=0

So, r=h-k+22=3h-4k+69+16=4h-3k+116+9

Consider, 3h-4k+65=4h-3k+15

 3h-4k+6=4h-3k+1h+k=5



Q 40 :

Let a circle C1 be obtained on rolling the circle x2+y2-4x-6y+11=0 upwards 4 units on the tangent T to it at the point (3, 2). Let C2 be the image of C1 in T.  Let A and B be the centers of circles C1 and C2 respectively, and M and N be respectively the feet of perpendiculars drawn from A and B on the x-axis. Then the area of the trapezium AMNB is:         [2023]

  • 2(2+2)

     

  • 2(1+2)

     

  • 4(1+2)

     

  • 3+22

     

(3)

We have, x2+y2-4x-6y+11=0                   ...(i)

Centre = (2, 3); Radius =2

Tangent at (3,2) is, 3x+2y-2(x+3)-3(y+2)+11=0

  x-y=1

On rolling the given circle (i) upwards 4 units on the tangent x-y-1=0, centre of the circle also moves upwards 4 units on T. Let the centre of the new circle C1 be (h,k).

Since, slope of tangent = Slope of line joining two centres of the circle.  

Then the increment in both coordinates will be same.

From figure,

(2+a-2)2+(3+a-3)2=16

a2+a2=16  a2=8  a=22

Hence, the centre of circle C1 is (2+22, 3+22) and radius remains same 2.

Equation of circle C1 is (x-2-22)2+(y-3-22)2=2

The centre of circle C2 is the image of C1 in T, then 

x-2-21=y-3-22-1=-2(2+22-3-22-1)12+(-1)2

  x-2-22=2 and y-3-22=-2

  y=1+22  x=4+22

The centre of circle C2 is  B(4+22,1+22).

Feet of perpendicular from A and B on the x-axis are  M(2+22,0) and N(4+22,0) respectively.

Area of trapezium AMNB =12(3+22+1+22)(4+22-2-22)

=12×(4+42)×2=4+42 sq. units.