Q 1 :    

A heavy iron bar, of weight W is having its one end on the ground and the other on the shoulder of a person. The bar makes an angle θ with the horizontal. The weight experienced by the person is _____.      [2024]

  • W2

     

  • W

     

  • W cos θ

     

  • W sin θ

     

(1)

NB=net reaction force by shoulder.

Balancing torque about point of contact (A) on ground:

W(L2cosθ)=NB(Lcosθ)

NB=W2



Q 2 :    

A heavy iron bar of weight 12 kg is having its one end on the ground and the other on the shoulder of a man. The rod makes an angle 60° with the horizontal, the weight experienced by the man is _____.    [2024]

  • 6 kg

     

  • 12 kg

     

  • 3 kg

     

  • 63 kg

     

(3)

Torque about O=0

120(L2cos60°)-N2L=0

N2=30N



Q 3 :    

The torque due to the force (2i^+j^+2k^) about the origin, acting on a particle whose position vector is (i^+j^+k^), would be          [2025]

  • (i^j^+k^)

     

  • (i^+k^)

     

  • (i^k^)

     

  • (j^k^)

     

(3)

τ=r×F

τ=|i^j^k^111212|

τ=i^(21)j^[0]+k^(12)=i^k^



Q 4 :    

A uniform rod of mass 250 g having length 100 cm is balanced on a sharp edge at 40 cm mark. A mass of 400 g is suspended at 10 cm mark. To maintain the balance of the rod, the mass to be suspended at 90 cm mark, is          [2025]

  • 300 g

     

  • 190 g

     

  • 200 g

     

  • 290 g

     

(2)

τNet=0  (400 g×30)=(250 g×10)+(m g×50)

m=12000250050=950050

m=190 g



Q 5 :    

A square Lamina OABC of length 10 cm is pivoted at 'O'. Forces act at Lamina as shown in figure. If Lamina remains stationary, then the magnitude of F is:          [2025]

  • 20 N

     

  • 0 (zero)

     

  • 10 N

     

  • 102 N

     

(3)

Since the Lamina is equilibrium.

The net torque about O = 0

Fl+10l10l+10l=0  F=10 N



Q 6 :    

Which of the following are correct expressions for torque acting on a body?

A. τ=r×L                               B. τ=ddt(r×p)

C. τ=r×dpdt                            D. τ=Iα

E. τ=r×F

(r = position vector; p = linear momentum; L = angular momentum;

α = angular acceleration; I = moment of inertia; F = force; t = time)

Choose the correct answer from the options given below:          [2025]

  • B, D and E Only

     

  • C and D Only

     

  • B, CD and E Only

     

  • A, B, D and E Only

     

(3)

τ=r×L                          wrong

τ=ddt(r×p)               correct

τ=r×dpdt=r×F       correct

τ=Iα                                  correct

τ=r×F                            correct



Q 7 :    

The coordinates of a particle with respect to origin in a given reference frame is (1, 1, 1) meters. If a force of F=i^j^+k^ acts on the particle, then the magnitude of torque (with respect to origin) in z-direction is __________.          [2025]



(2)

τ=r×F=|i^j^k^111111|

τ=k^(11)=2k^  |τ|=2 Nm