Q 1 :    

A hollow sphere is rolling on a plane surface about its axis of symmetry. The ratio of rotational kinetic energy to its total kinetic energy is x5. The value of x is _______ .          [2024]



(2)       KERotKETrans=12Iω212Iω2+12mv2=(12)(23mR2)ω2(12)(23mR2)ω2+12m(Rω)2

           KERotKETrans=2323+1=25

          Hence, x=2

 



Q 2 :    

A circular disc reaches from top to bottom of an inclined plane of length l. When it slips down the plane, if takes t s. When it rolls down the plane then it takes (α2)1/2 t s, where α is _______ .              [2024]



(3)         If disc slips on inclined plane, then it's acceleration, a1=gsinθ

             l=12a1t12t=2lgsinθ                       (i)

            If disc rolls on inclined plane its acceleration, 

            a2=gsinθ1+ImR2=gsinθ1+mR22mR2=23gsinθ

           Now l=12a2t22t2=2l23gsinθ

            t2=322lgsinθ=32t             (ii)

           On comparing, 32t=α2tα=3

 



Q 3 :    

A solid sphere and a hollow cylinder roll up without slipping on the same inclined plane with the same initial speed v. The sphere and the cylinder reach up to maximum heights h1 and h2, respectively, above the initial level. The ratio h1:h2 is n10. The value of n is _____.      [2024]



(7)

Energy conservation, Gain in P.E. = Loss in K.E.

12mv2+12Iω2=mgh

For pure rolling; v=ωR

12mv2+12Iv2R2=mgh

12v2(m+mK2R2)=mgh

mgh=12mv2(1+K2R2)h1+K2R2

h1h2=1+251+1=75×2=710

Hence, n=7