Q 11 :

Two soap bubbles of radius 2 cm and 4 cm, respectively, are in contact with each other. The radius of curvature of the common surface, in cm, is __________.          [2025]



(4)

The excess pressure inside a soap bubble is given by the formula,

P=4TR, where

T is the surface tension of the soap solution, and R is the radius of the bubble.

For the first bubble (R1 = 2 cm) : P1=4TR1

For the first bubble (R2 = 4 cm) : P2=4TR2

When the two bubbles join, the difference in pressure between the two bubbles will equal the pressure difference across the interface (R):

P1P2=P

 4TR14TR2=4TR

 R=R1·R2R2R1=2·442=4 cm



Q 12 :

An air bubble of radius 1.0 mm is observed at a depth of 20 cm below the free surface of a liquid having surface tension 0.095 J/m2 and density 103 kg/m3. The difference between pressure inside the bubble and atmospheric pressure ________ N/m2. (Take g = 10 m/s2)          [2025]



(2190)

P=PinP0

=ρgh+2TR=1000×10×20100+2×0.095103

=2000+190=2190 Pa



Q 13 :

Surface tension of a soap bubble is 2.0×10-2 Nm-1. Work done to increase the radius of the soap bubble from 3.5 cm to 7 cm will be [Take π=227]          [2023]

  • 0.72×10-4 J

     

  • 5.76×10-4 J

     

  • 18.48×10-4 J

     

  • 9.24×10-4 J

     

(3)

Surface area of soap bubble=2×4πR2

Work done=change in surface energy×Ts

           =Ts×8π×(R22-R12)

            =2×10-2×8×227×49×34×10-4

            =18.48×10-4 J



Q 14 :

If 1000 droplets of water of surface tension 0.07 N/m, having same radius 1 mm each, combine to form a single drop, In the process the released surface energy is (Take π=227)                        [2023]

  • 7.92×10-6 J

     

  • 7.92×10-4 J

     

  • 9.68×10-4 J

     

  • 8.8×10-5 J

     

(2)

1000×4π3(1)3=4π3R3

R=10 mm

T×1000×4π(10-3)2-T×4π(10×10-3)2=ΔE

ΔE=4×π×7×10-2[1000-100]×10-6

ΔE=7.92×10-4 J



Q 15 :

A mercury drop of radius 10-3 m is broken into 125 equal size droplets. Surface tension of mercury is 0.45 Nm-1. The gain in surface energy is           [2023]

  • 2.26×10-5 J

     

  • 28×10-5 J

     

  • 17.5×10-5 J

     

  • 5×10-5 J

     

(1)

Initial surface energy=0.45×4π(10-3)2

43π(10-3)2=125×4π3Rnew2

 10-3=5Rnew

 Rnew=10-35m

So, final surface energy=0.45×125×4π(10-35)2

Increase in energy=0.45×4π×(10-3)2[12525-1]

                                     =4×0.45×4π×10-6=2.26×10-5 J



Q 16 :

A spherical drop of liquid splits into 1000 identical spherical drops. If ui is the surface energy of the original drop and uf is the total surface energy of the resulting drops, the (ignoring evaporation) ufui=(10x). Then value of x is ___________ .                    [2023]



(1)

Surface tension=T

R:Radius of bigger drop

r:Radius of smaller drop

Volume will remain same

43πR3=1000×43πr3R=10r

Ui=T·4πR2

Uf=T·4πr2×1000

UfUi=1000r2R2=101

So, x=1



Q 17 :

The surface tension of soap solution is 3.5×10-2Nm-1. The amount of work done required to increase the radius of a soap bubble from 10 cm to 20 cm is ______ ×10-4 J.        [2023]



(264)

W=T(ΔA)

W=T(8π(r22-r12))=264×10-4 J



Q 18 :

There is an air bubble of radius 1.0 mm in a liquid of surface tension 0.075 Nm-1and density 1000 kg m-3 at a depth of 10 cm below the free surface. The amount by which the pressure inside the bubble is greater than the atmospheric pressure is ________ Pa (g=10ms-2)             [2023]



(1150)

[IMAGE 87]

Pressure inside the bubble

P=P0+hρg+2Tr

P-P0=hρg+2Tr

=0.1×1000×10+2×0.07510-3

=1000+(0.1)(1000)=1150 Pa