Q 1 :    

A sphere of relative density σ and diameter D has concentric cavity of diameter d. The ratio of Dd, if it just floats on water in a tank is:            [2024]

  • (σσ-1)13

     

  • (σ+1σ-1)13

     

  • (σ-1σ)13

     

  • (σ-2σ+2)13

     

(A)    Weight of sphere, W=43π(D3-d38)σg

         Buoyant force Fb=43π(D38)ρwg

         For Just Float, W=Fb

        43π(D3-d38)σg=43π(D38)ρwg

        1-d3D3=ρwσ(ρw=1)

          1-1σ=(dD)3Dd=(σσ-1)1/3

 



Q 2 :    

A cube of ice floats partly in water and partly in kerosene oil. The ratio of volume of ice immersed in water to that in kerosene oil (specific gravity of kerosene oil = 0.8, specific gravity of ice = 0.9)      [2024]

  • 5 : 4

     

  • 9 : 10

     

  • 1 : 1

     

  • 8 : 9

     

(3)

V1=volume immersed in water

V2=volume immersed in oil

Buoyancy force balance weight at equilibrium

FB1+FB2=mg

V1ρwg+V2ρog=(V1+V2)ρcg

V1+V2ρoρw=(V1+V2)ρcρw

V1+0.8V2=0.9V1+0.9V2

0.1V1=0.1V2V1:V2=1:1V1:V2=1:1