Q 1 :

In the given electromagnetic wave Ey=600sin(ωt-kx)Vm-1, intensity of the associated light beam is (in W/m2)

(Given ε0=9×10-12C2N-1m-2)               [2024]

  • 729

     

  • 243

     

  • 972

     

  • 486

     

(4)   

 Intensity, I=12ϵ0E02cI=92×36×3=486W/m2

 



Q 2 :

A plane electromagnetic wave propagating in x-direction is described by

Ey=(200Vm-1)sin[1.5×107t-0.05x];

The intensity of the wave is

(Use ε0=8.85×10-12C2N-1m-2)              [2024]

  • 35.4 Wm-2

     

  • 53.1 Wm-2

     

  • 26.2 Wm-2

     

  • 106.2 Wm-2

     

(2)   

         I=12ε0E02×c

          I=53.1 W/m2

 



Q 3 :

In a plane EM wave, the electric field oscillates sinusoidally at a frequency of 5×1010Hz and an amplitude of 50Vm-1. The total average energy density of the electromagnetic field of the wave is [Use ε0=8.85×10-12C2/Nm2]                       [2024]

  • 1.106×10-8Jm-3

     

  • 2.212×10-10Jm-3

     

  • 4.425×10-8Jm-3

     

  • 2.212×10-8Jm-3

     

(1)   

          UE=12ϵ0E2

            UE=12×8.85×10-12×(50)2=1.106×10-8J/m3

 



Q 4 :

Due to presence of an em-wave whose electric component is given by E = 100 sin (ωtkx) NC1, a cylinder of length 200 cm holds certain amount of em-energy inside it. If another cylinder of same length but half diameter than previous one holds same amount of em-energy, the magnitude of the electric field of the corresponding em-wave should be modified as          [2025]

  • 25 sin (ωtkxNC1

     

  • 200 sin (ωtkxNC1

     

  • 400 sin (ωtkxNC1

     

  • 50 sin (ωtkxNC1

     

(2)

Energy density of an EMwave=12ε0E02, where E0 is the amplitude of the wave. 

Since total energy is the same for both cylinders

(12ε0E12)πR12L1=(12ε0E22)πR22L2

E12R12L1=E22R22L2

or    E2=E1R1R2L1L2=100d(d/2)L1L1=200N/C    [ L1=L2=200 cm]

The amplitude of corresponding electromagnetic wave is 200 N/C.

Hence the wave is, E=200sin(ωt-kx)NC-1.



Q 5 :

The unit of 2Iε0c is:

(I = intensity of an electromagnetic wave, c : speed of light)          [2025]

  • Vm

     

  • NC

     

  • Nm

     

  • NC1

     

(4)

I=12ε0E02×c      E0=2Iε0c

E0: electric field (N/C)



Q 6 :

An electromagnetic wave is transporting energy in the negative ‘z’ direction. At a certain point and certain time the direction of electric field of the wave is along positive ‘y’ direction. What will be direction of the magnetic field of the wave at that point and instant?                  [2023]

  • Positive direction of ‘z’

     

  • Negative direction of ‘y’

     

  • Positive direction of ‘x’

     

  • Negative direction of ‘x’

     

(3)

S¯=-k^, E¯=j^, B¯=?

S¯=E¯×B¯

Here B¯ should be along positive x-direction.



Q 7 :

The ratio of average electric energy density and total average energy density of electromagnetic wave is            [2023]

  • 2

     

  • 1

     

  • 3

     

  • 12

     

(4)

uE=uB=12utotal

So  uEutotal=12



Q 8 :

For the plane electromagnetic wave given by E=E0sin(ωt-kx) and B=B0sin(ωt-kx), the ratio of average electric energy density to average magnetic energy density is              [2023]

  • 1

     

  • 2

     

  • 4

     

  • 1/2

     

(1)

Electric energy densityMagnetic energy density=12ε0Erms2(Brms22μ0)
=(ErmsBrms)2·μ0ε0   [c=1μ0ε0]

=c2c2=1



Q 9 :

The energy density associated with electric field E and magnetic field B of an electromagnetic wave in free-space is given by (ε0-permittivity of free space, μ0-permeability of free space)                       [2023]

  • UE=E22ε0, UB=B22μ0

     

  • UE=E22ε0, UB=μ0B22

     

  • UE=ε0E22, UB=μ0B22

     

  • UE=ε0E22, UB=B22μ0

     

(4)

UE=12ε0E2,    UB=B22μ0



Q 10 :

The energy of an electromagnetic wave contained in a small volume oscillates with                 [2023]

  • zero frequency

     

  • half the frequency of the wave

     

  • double the frequency of the wave

     

  • the frequency of the wave

     

(3)

E=E0sin(ωt-kx)

Energy density (dudv)=ε0E02sin2(ωt-kx)

=ε0E022[1-cos(2ωt-2kx)]