Q 41 :    

Let a common tangent to the curves y2=4x and (x-4)2+y2=16 touch the curves at the points P and Q. Then (PQ)2 is equal to _________ .      [2023]



(32)

Equation of tangent to parabola y2=4x is given by  

     y=mx+1m                                ...(i)

and equation of tangent to the circle (x-4)2+y2=16 is given by  

      y=m(x-4)±41+m2              ...(ii)

From (i) and (ii), we get  

     1m=-4m±41+m2

1+4m2=±4m1+m21+16m4+8m2=16m2+16m4

8m2=1m=±122

Point of contact of parabola is (1(122)2,2122)                      [ Point of contact is (am2,2am)]

i.e., (8,42)

Now, length of tangent PQ=(8-4)2+(42)2-16=32

   PQ2=32



Q 42 :    

If the x-intercept of a focal chord of the parabola y2=8x+4y+4 is 3, then the length of this chord is equal to _______.         [2023]



(16)

Given, the x-intercept of a focal chord of the parabola y2=8x+4y+4 is 3.

y2=8x+4y+4(y-2)2=8(x+1)Y2=4·2·X

Y=y-2, X=x+1, a=2

For focus x+1=2 and y-2=0x=1 and y=2

 Focus is (1,2)

Equation of line passing through (1,2) is  

y-2=m(x-1), (3,0) lies on the above line,  

  -2=m(3-1)m=-1

  Equation of line is y-2=-1(x-1)

i.e., x+y-3=0     y=3-x

Now put the value of y in equation of parabola (3-x)2=8x+4(3-x)+4

9+x2-6x=8x+12-4x+4    x=5+42, 5-42

So, y=-2-42,  42-2

So, length of focal chord is  

=(42+42)2+(-2-42-42+2)2

=128+128=256=16



Q 43 :    

Let S be the set of all aN such that the area of the triangle formed by the tangent at the point P(b,c), b,cN, on the parabola y2=2ax and the lines x=b,y=0 is 16 unit2, then aSa is equal to _________ .              [2023]



(146)

As P(b,c) lies on parabola  

So,  c2=2ab                                           ...(i)

Now, equation of tangent to parabola y2=2ax in point form is yy1=2a(x+x12), where (x1,y1)(b,c)

yc=a(x+b)

For point B, put y=0, we get x=-b

So, area of PBA12×AB×AP=16    (Given)

12×2b×c=16bc=16

As b and c are natural numbers, possible values of (b,c) are (1,16),(2,8),(4,4),(8,2),(16,1)

Now from equation (i) a=c22b and aN, So value of (b,c) are (1,16), (2,8) and (4,4). Now, values of a are 128,16 and 2.

Hence, sum of values of a is 146.