Q 1 :

The temperature of a body in air falls from 40°C to 24°C in 4 minute. The temperature of the air is 16°C. The temperature of the body in the next 4 minutes will be          [2025]

  • 14/3°C

     

  • 28/3°C

     

  • 56/3°C

     

  • 42/3°C

     

(3)

T2T1t=K[TavgTs]

        T1=24°C; T2=40°C; t=4, Ts=16°C

40244=K[3216]

          K=416=14

Now 24T4=K[T+24216]

          24T=T82

            3T2=28  T=563°C



Q 2 :

A cup of coffee cools from 90°C to 80°C in t minutes when the room temperature is 20°C. The time taken by the similar cup of coffee to cool from 80°C to 60°C at the same room temperature is:          [2025]

  • 135t

     

  • 1013t

     

  • 1310t

     

  • 513t

     

(1)

By using average form of Newton's law of cooling

         9080t=c(90+80220)          ... (i)

and 8060t1=c(80+60220)          ... (ii)

From (i) and (ii)

t1=135t



Q 3 :

A wire of length 10 cm and diameter 0.5 mm is used in a bulb. The temperature of the wire is 1727°C and power radiated by the wire is 94.2 W. Its emissivity is x8 where x = ________.

(Given σ=6.0×108 Wm2 K4, π=3.14 and assume that the emissivity of wire material is same at all wavelength.)          [2025]



(5)

L = 10 cm, d = 0.5 mm, T = 1727°C = 2000 K

Power, P = 94.2 W

P=εσAT4

94.2=ε×(6×108)(πdL)(2000)4

94.2=ε×(6×108)(3.14)(0.5)(103)(10×102)(2000)4

ε=58  x=5



Q 4 :

Two spherical bodies of same materials having radii 0.2 m and 0.8 m are placed in same atmosphere. The temperature of the smaller body is 800 K and temperature of bigger body is 400 K. If the energy radiated from the smaller body is E, the energy radiated from the bigger body is (assume, effect of the surrounding to be negligible)         [2025]

  • 256 E

     

  • E

     

  • 64 E

     

  • 16 E

     

(2)

dθdt=σeAT4  PAT4

         =PsmallerPlarger=(0.2)2×8004(0.8)2×4004=116×16=1

  Plarger=Psmaller

  Energy will be same.



Q 5 :

A bowl filled with very hot soup cools from 98°C to 86°C in 2 minutes when the room temperature is 22°C. How long will it take to cool from 75°C to 69°C?         [2023]

  • 2 minutes

     

  • 1 minute

     

  • 1.4 minutes

     

  • 0.5 minute

     

(3)

θ2-θ1t=k(θ1+θ22-θ0)

98-862 min=k(98+862-22)                    ...(i)

75-69t min=k[75+692-22]                     ...(ii)

Solving (i) and (ii), we get t=1.4 min



Q 6 :

A body cools in 7 minutes from 60°C to 40°C. The temperature of the surrounding is 10°C. The temperature of the body after the next 7 minutes will be         [2023]

  • 32°C

     

  • 30°C

     

  • 28°C

     

  • 34°C

     

(3)

Using average rate of Newton's law of cooling

T1-T2t=K(T1+T22-Ts)

Given 60-407=K(50-10)                     ...(i)

         40-T7=K(40+T2-10)                  ...(ii)

From (i) and (ii), T=28°C



Q 7 :

A body cools from 80°C to 60°C in 5 minutes. The temperature of the surrounding is 20°C. The time it takes to cool from 60°C to 40°C is            [2023]

  • 500 s

     

  • 253 s

     

  • 450 s

     

  • 420 s

     

(1)

Rate of cooling  Temperature difference

80-605=k{70-20}                         ...(i)

60-40t=k{50-20}                        ...(ii)

4t20=5030

t=253 min=500 sec

 t=500 sec



Q 8 :

A body cools from 60°C to 40°C in 6 minutes. If the temperature of the surroundings is 10°C, then after the next 6 minutes, its temperature will be _____ °C.        [2023]



(28)

By average form of Newton's law of cooling

206=k(50-10)                                      ...(i)

40-T6=k(40+T2-10)                      ...(ii)

From equations (i) and (ii)

2040-T=4010+T2

10+T2=80-2T

5T2=70  T=28°C