Q 1 :    

The radius of gyration of a solid sphere of mass 5 kg about XY is 5 m as shown in figure. The radius of the sphere is 5x7m, then the value of x is        [2024]

[IMAGE 61]

  • 5

     

  • 2

     

  • 3

     

  • 5

     

(4)

[IMAGE 62]

As we know that the moment of inertia of a solid sphere about XY is,

IXY=75MR2    Also, IXY=MK2

So, MK2=75MR2

R2=57K2

or R=K57  or R=557  (K=5m)

On comparing with R=5x7, the value of x is 5.



Q 2 :    

The moment of inertia of a thin rod about an axis passing through its mid point and perpendicular to the rod is 2400g cm2. The length of the 400 g rod is nearly    [2024]
 

  • 8.5 cm

     

  • 17.5 cm

     

  • 20.7 cm

     

  • 72.0 cm

     

(1)

Moment of inertia of a thin rod about an axis passing through its mid point and perpendicular to the rod

            Icm=Ml212                                                     ...(i)

where, M = Mass of the rod, l = Length of the rod

Given, M=400g, l=?, Icm=2400g cm2

From eq (i), l=Icm×12M=2400×12400=8.4848.5cm

 



Q 3 :    

A solid sphere of mass m and radius R is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation (EsphereEcylinder) will be             [2016]
 

  • 2 : 3

     

  • 1 : 5

     

  • 1 : 4

     

  • 3 : 1

     

(2)

ESphereECylinder=12Isωs212Icωc2=Isωs2Icωc2

Here, Is=25mR2,  Ic=12mR2,  ωc=2ωs

ESphereECylinder=25mR2×ωs212mR2×(2ωs)2=45×14=15



Q 4 :    

A light rod of length l has two masses m1 and m2 attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is                 [2016]
 

  • m1m2m1+m2l2

     

  • m1+m2m1m2l2

     

  • (m1+m2)l2

     

  • m1m2l2

     

(1)

Here, l1+l2=l

[IMAGE 63]

Centre of mass of the system,

l1=m1×0+m2×lm1+m2=m2lm1+m2

          l2=l-l1=m1lm1+m2

Required moment of inertia of the system,

     I=m1l12+m2l22

       =(m1m22+m2m12)l2(m1+m2)2

       =m1m2(m1+m2)l2(m1+m2)2=m1m2m1+m2l2