Q 1 :    

The Sun rotates around its centre once in 27 days. What will be the period of revolution if the Sun were to expand to twice its present radius without any external influence ? Assume the Sun to be a sphere of uniform density.                 [2025]
 

  • 115 days

     

  • 108 days

     

  • 100 days

     

  • 105 days

     

(2)

T1=27 days, R1=R, R2=2R

By conservation of angular momentum

I1ω1=I2ω2

25mR12×2πT1=25mR22×2πT2

R227=4R2T2T2=27×4=108 days



Q 2 :    

A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?           [2018]

  • Angular velocity.

     

  • Moment of inertia.

     

  • Rotational kinetic energy.

     

  • Angular momentum.

     

(4)

As there is no external torque acting on a sphere, i.e., τex=0

So, dLdt=τex=0  i.e., L=constant

So angular momentum remains constant.



Q 3 :    

Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc has angular velocities ω1 and ω2. They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is     [2017]
 

  • 14I(ω1-ω2)2

     

  • I(ω1-ω2)2

     

  • 18I(ω1-ω2)2

     

  • 12I(ω1+ω2)2

     

(1)

Initial angular momentum =Iω1+Iω2

Let ω be angular speed of the combined system.

Final angular momentum = 2Iω

      According to conservation of angular momentum

           Iω1+Iω2=2Iω  or  ω=ω1+ω22

Initial rotational kinetic energy,

         E=12I(ω12+ω22)

Final rotational kinetic energy

  Ef=12(2I)ω2=12(2I)(ω1+ω22)2=14I(ω1+ω2)2

        Loss of energy ΔE=Ei-Ef

           =I2(ω12+ω22)-I4(ω12+ω22+2ω1ω2)

            =I4[ω12+ω22-2ω1ω2]=I4(ω1-ω2)2



Q 4 :    

Two rotating bodies A and B of masses m and 2m with moments of inertia IA and IB (IB>IA) have equal kinetic energy of rotation. If LA and LB be their angular momenta respectively, then               [2016]
 

  • LA=LB2

     

  • LA=2LB

     

  • LB>LA

     

  • LA>LB

     

(3)

Here, mA=m, mB=2m

Both bodies A and B have equal kinetic energy of rotation

        KA=KB12IAωA2=12IBωB2

ωA2ωB2=IBIA                                                            ...(i)

Ratio of angular momenta, 

        LALB=IAωAIBωB=IAIB×IBIA  [Using eqn. (i)]

                    =IAIB<1                  (IB>IA)

  LB>LA