Q 1 :    

A wheel of a bullock cart is rolling on a level road as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel respectively)?           [2024]

[IMAGE 71]

  • Point P moves slower than point Q.

     

  • Point P moves faster than point Q.

     

  • Both the points P and Q move with equal speed.

     

  • Point P has zero speed.

     

(2)

[IMAGE 72]

For pure rolling vcm=rω

Given, vcm=v

   v=rω                               ...(i)

Net velocity is the vector sum of translational and rotational velocity and θ is the angle between translational and rotational velocity.

|vnet|=v2+(rω)2+2(v)(rω)cosθ                        ...(i)

For point Q, θ=180°

|vQ|=v2+r2ω2+2rvωcos180°

           =(v-rω)2=v-rω

|vQ|=rω-rω=0  (using (i))                            ...(ii)

Now for point P, θ=0°

Using eq. (i), we have

|vP|=v2+(rω)2+2(v)(rω)cos0°

       =(v+rω)2=v+rω

Using eq. (i), we have   

|vP|=2rω                                   ...(iii)

So, it is clear from equation (ii) and (iii) that point P moves faster than point Q.



Q 2 :    

A disc of radius 2 m and mass 100 kg rolls on a horizontal floor. Its centre of mass has speed of 20 cm/s. How much work is needed to stop it?         [2019]

  • 1 J

     

  • 3 J

     

  • 30 kJ

     

  • 2 J

     

(2)

Required work done =-(Kf-Ki)=0+Ki=Ki

=12Iω2+12mv2=12(12mR2)v2R2+12mv2

=34mv2=34×100×(20×10-2)2=3J

 



Q 3 :    

A solid cylinder of mass 2 kg and radius 50 cm rolls up an inclined plane of angle inclination 30°. The centre of mass of cylinder has speed of 4 m/s. The distance travelled by the cylinder on the incline surface will be (Take g = 10 m/s2)            [2019]

  • 2.2 m 

     

  • 1.6 m

     

  • 1.2 m

     

  • 2.4 m

     

(4)

Using law of conservation of energy,

mgh=12mvCM2+14mr2ω2

mgssin30°=12mvCM2+14mvCM2

s=34 vCM2gsin30°s=34×4210×12

s=3×4×210=125=2.4 m



Q 4 :    

A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (Kt) as well as rotational kinetic energy (Kr) simultaneously. The ratio Kt:(Kt+Kr) for the sphere is            [2018, 1991]
 

  • 7 : 10

     

  • 5 : 7

     

  • 10 : 7

     

  • 2 : 5

     

(2)

Translational kinetic energy, Kt=12mv2

Rotational kinetic energy, Kr=12Iω2

  Kt+Kr=12mv2+12Iω2=12mv2+12(25mr2)(vr)2

  Kt+Kr=710mv2                                                  [I=25mr2 (for sphere)]

So,   KtKt+Kr=57



Q 5 :    

A disc and a sphere of same radius but different masses roll off on two inclined planes of the same altitude and length. Which one of the two objects gets to the bottom of the plane first?          [2016]

  • Both reach at the same time

     

  • Depends on their masses

     

  • Disc

     

  • Sphere

     

(4)

Time taken by the body to reach the bottom when it rolls down on an inclined plane without slipping is given by

            t=2l(1+k2R2)gsinθ

Since g is constant and l,R and sinθ are same for both

    tdts=1+kd2R21+ks2R2=1+R22R21+2R25R2       (kd=R2,  ks=25R)

          =32×57=1514td>ts

Hence, the sphere gets to the bottom first.



Q 6 :    

The ratio of the accelerations for a solid sphere (mass m and radius R) rolling down an incline of angle θ without slipping and slipping down the incline without rolling is   [2014]

  • 5 : 7

     

  • 2 : 3

     

  • 2 : 5

     

  • 7 : 5

     

(1)

Acceleration of the solid sphere slipping down the incline without rolling is

          aslipping=gsinθ                                ...(i)

Acceleration of the solid sphere rolling down the incline without slipping is

          arolling=gsinθ1+k2R2=gsinθ1+25=57gsinθ                     ..(ii)

                                                            (For solid sphere, k2R2=25)

Divide eqn. (ii) by eqn. (i), we get

             arollingaslipping=57