Q 1 :    

Find the torque about the origin when a force of 3j^N acts on a particle whose position vector is 2k^m.               [2020]
 

  • 6i^Nm

     

  • 6j^Nm

     

  • -6i^Nm

     

  • 6k^Nm

     

(3)

Here, F=3j^N,     r=2k^m

Torque, τ=r×F=2k^×3j^=-6i^Nm



Q 2 :    

The moment of the force, F=4i^+5j^-6k^ at (2,0,-3) about the point (2,-2,-2), is given by               [2018]

  • -8i^-4j^-7k^

     

  • -4i^-j^-8k^

     

  • -7i^-8j^-4k^

     

  • -7i^-4j^-8k^

     

(4)

[IMAGE 55]

Moment of the force is,

τ=(r-r0)×F

Here, r0=2i^-2j^-2k^

and r=2i^+0j^-3k^

    r-r0=(2i^+0j^-3k^)-(2i^-2j^-2k^)=0i^+2j^-k^

    τ=|i^j^k^02-145-6|=-7i^-4j^-8k^



Q 3 :    

A force F=αi^+3j^+6k^ is acting at a point r=2i^-6j^-12k^. The value of α for which angular momentum about origin is conserved is           [2015]
 

  • zero

     

  • 1

     

  • - 1

     

  • 2

     

(3)

For the conservation of angular momentum about origin, the torque τ acting on the particle will be zero.

By definition, τ=r×F

Here, r=2i^-6j^-12k^ and F=αi^+3j^+6k^

   τ=|i^j^k^2-6-12α36|

           =i^(-36+36)-j^(12+12α)+k^(6+6α)

            =-j^(12+12α)+k^(6+6α)

But  τ=0

      12+12α=0  or  α=-1 and  6+6α=0  or  α=-1



Q 4 :    

A mass m moves in a circle on a smooth horizontal plane with velocity v0 at a radius R0. The mass is attached to a string which passes through a smooth hole in the plane as shown. The tension in the string is increased gradually and finally m moves in a circle of radius R02. The final value of the kinetic energy is       [2015]

[IMAGE 56]
 

  • 2mv02

     

  • 12mv02

     

  • mv02

     

  • 14mv02

     

(1)

According to law of conservation of angular momentum

        mvr=mv'r'

        v0R0=v(R02); v=2v0                              ...(i)

    K0K=12mv0212mv2=(v0v)2

or    KK0=(vv0)2=(2)2  (Using (i))

          K=4K0=2mv02