Q 1 :    

A uniform rod of mass 20 kg and length 5 m leans against a smooth vertical wall making an angle of 60° with it. The other end rests on a rough horizontal floor. The friction force that the floor exerts on the rod is (take g=10m/s2)                 [2025]
 

  • 200 N

     

  • 2003

     

  • 100 N

     

  • 1003

     

(4)

Given that: Mass of rod, m=20kg,

Length of rod, l=5m

[IMAGE 57]

Weight of the uniform rod = mg

=20×10=200N

For vertical direction, W=N2

For horizontal direction, f=N1

(where f is the frictional force)

Since rod is stationary, so net torque is zero (about B)

  Distance from wall to the centre of mass of rod (L/2) is

  D=L2cos30°=12(32)=34

⇒Now, distance OA=Lsin30°=L2

Taking torque about point B to be zero

mg×L2cos30°=N1×Lsin30°

mg×12×32=f×12  [As, N1=f]

200×34=f2  or  f=1003N



Q 2 :    

A uniform rod of length 200 cm and mass 500 g is balanced on a wedge placed at 40 cm mark. A mass of 2 kg is suspended from the rod at 20 cm and another unknown mass 'm' is suspended from the rod at 160 cm mark as shown in the figure. Find the value of 'm' such that the rod is in equilibrium. (g=10m/s2)       [2021]

[IMAGE 58]

  • 112kg

     

  • 12kg

     

  • 13kg

     

  • 16kg

     

(1)

Here, AD=20cm

AE=160cm

g=10m/s2

Take moments about C

[IMAGE 59]

Clockwise moment = Anticlockwise moment

       2×g×DC=0.50×g×CC1+m×g×CE

or    2×(40-20)=0.500×(100-40)+m×(60+60)

or    40-30=120m

or    m=112kg

 



Q 3 :    

A rod of weight W is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the rod is at distance x from A. The normal reaction on A is         [2015]  
 

  • W(d-x)x

     

  • W(d-x)d

     

  • Wxd

     

  • Wdx

     

(2)

Given situation is shown in figure.

[IMAGE 60]

N1 = Normal reaction on A

N2 = Normal reaction on B

W = Weight of the rod

In vertical equilibrium,

            N1+N2=W                             ...(i)

Torque balance about centre of mass of the rod,

           N1x=N2(d-x)

Putting value of N2 from equation (i)

N1x=(W-N1)(d-x)N1x=Wd-Wx-N1d+N1x

N1d=W(d-x);         N1=W(d-x)d