Q 11 :

A hollow spherical ball of uniform density rolls up a curved surface with an initial velocity 3 m/s (as shown in figure). Maximum height with respect to the initial position covered by it will be ________ cm (take g = 10 m/s2)             [2023]



(75)

At highest point KEf=0

Initial KE=Translational KE+Rotational KE

                   =12mv2+12Iω2

In case of rolling v=Rω

                   =12mv2+12×23mR2×v2R2=56mv2

Apply energy conservation, KEi+PEi=KEf+PEf

            56mv2=mgh

h=56×10×9 m=1520m=75 cm



Q 12 :

For a rolling spherical shell, the ratio of rotational kinetic energy and total kinetic energy is x5. The value of x is ________.          [2023]



(2)

KrotKtotal=12(23mR2)(vR)212mv2+12(23mR2)(vR)2

x5=25x=2



Q 13 :

A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about the axis of rotation of the sphere to the total energy of the moving sphere is π:22, then the value of its angular speed will be ________ rad/s.       [2023]



(4)

L=(Icom)(ω) and K=12(Icom)(ω2)+12MVcom2

L=25MR2VcomR

K=12(25MR2)vcom2R2+12MVcom2

L=2MRVcom5    K=710MVcom2

Ratio LK=47Rvcom=π22  ω=47×2222×7=4