Q 11 :

'T' is the time period of a simple pendulum on the earth’s surface. Its time period becomes xT when taken to a height R (equal to earth’s radius) above the earth’s surface. Then, the value of 'x' will be                    [2023]

  • 14

     

  • 4

     

  • 12

     

  • 2

     

(4)

T=2πlg

gh=g(RR+h)2=g(RR+R)2=g4

T1gT'=Tggh=2T



Q 12 :

For a simple harmonic motion in a mass–spring system shown, the surface is frictionless. When the mass of the block is 1 kg, the angular frequency is ω1. When the mass of the block is 2 kg, the angular frequency is ω2. The ratio ω2/ω1 is                  [2023]

[IMAGE 108]

  • 2

     

  • 12

     

  • 2

     

  • 12

     

(2)

ω=km

ω2ω1=m1m2=12



Q 13 :

Choose the correct length (L) versus square of time period (T2) graph for a simple pendulum executing simple harmonic motion.               [2023]

  • [IMAGE 109]

     

  • [IMAGE 110]

     

  • [IMAGE 111]

     

  • [IMAGE 112]

     

(3)

T=2πlg

 T2=4π2g×l

 T2l



Q 14 :

A mass m is attached to two springs as shown in the figure. The spring constants of the two springs are K1 and K2. For the frictionless surface, the time period of oscillation of mass m is                     [2023]

[IMAGE 113]

  • 2πmK1+K2

     

  • 12πK1-K2m

     

  • 12πK1+K2m

     

  • 2πmK1-K2

     

(1)

[IMAGE 114]

On displacing mass m to the right by x,

F=-(k1x+k2x)=-(k1+k2)x

a=Fm=-(k1+k2m)x=-ω2x

  ω=k1+k2mT=2πω=2πmk1+k2



Q 15 :

A block of a mass 2 kg is attached with two identical springs of spring constant 20 N/m each. The block is placed on a frictionless surface and the ends of the springs are attached to rigid supports (see figure). When the mass is displaced from its equilibrium position, it executes a simple harmonic motion. The time period of oscillation is πx in SI unit. The value of x is ________.         [2023]

[IMAGE 115]



(5)

F=-2kx,  a=-2kxm,

ω=2km=2×202=20 rad/s

T=2πω=2π10=π5x=5



Q 16 :

A mass m attached to the free end of a spring executes SHM with a period of 1 s. If the mass is increased by 3 kg, the period of oscillation increases by one second, the value of mass m is ______ kg.                [2023]



(1)

T=2πmk=1

T'=2πm+3k=2

TT'=mm+3=12

mm+3=14m=1



Q 17 :

In the figure given below, a block of mass M=490 g placed on a frictionless table is connected with two springs having the same spring constant (K=2 Nm-1). If the block is horizontally displaced through 'X' m, then the number of complete oscillations it will make in 14π seconds will be ______ .             [2023]

[IMAGE 116]



(20)

[IMAGE 117]

Keff=K+K (as both springs are in use in parallel)=2k=2×2=4 N/m

m=490 gm=0.49 kg

T=2πmKeff=2π0.494

    =2π49400=2π720=7π10

Number of oscillations in 14π is

N=timeT=14π7π/10=20



Q 18 :

A block is fastened to a horizontal spring. The block is pulled to a distance x=10 cm from its equilibrium position (at x=0) on a frictionless surface from rest. The energy of the block at x=5 cm is 0.25 J. The spring constant of the spring is ________ Nm-1.              [2023]



(67)

[IMAGE 118]

Ui=12kx02 and Ki=0

[IMAGE 119]

Uf=12k(x02)2 and Kf=0.25 J

12kx02+0=12kx024+0.25

12kx02·34=14

12k·3100=1  k=2003N/m67 N/m



Q 19 :

A simple pendulum with length 100 cm and bob of mass 250 g is executing S.H.M. of amplitude 10 cm. The maximum tension in the string is found to be x40 N. The value of x is ________ .              [2023]



(99)

sinθc=Al=10100=110

From conservation of energy:

12mv2=mgl(1-cosθ)

[IMAGE 120]----------

Maximum tension occurs at mean position.

 T-mg=mv2l  T=mg+mv2l

 T=mg+2mg(1-cosθ)

=mg[1+2(1-1-sin2θ)]=mg[3-21-1100]

=2501000×9.8[3-2(1-1200)]=9940

 x=99



Q 20 :

A rectangular block of mass 5 kg attached to a horizontal spiral spring executes simple harmonic motion of amplitude 1 m and time period 3.14 s. The maximum force exerted by the spring on the block is ______ N.            [2023]



(20)

T=3.14=π

T=π=2πωω=2

Fmax=mamax=m(Aω2)=mA(2)2

=5×1×4=20 N