Q 1 :

A particle is subjected two simple harmonic motions as:

x1=7 sin 5t cm and x2=27 sin (5t+π3) cm

where x is displacement and t is time in seconds.

The maximum acceleration of the particle is x×102 ms2. The value of x is:          [2025]

  • 175

     

  • 257

     

  • 57

     

  • 125

     

(1)

Applied simple harmonic motions on the particle,

x1=7 sin 5t and x2=27 sin (5t+π3)

From phasor,

Amplitude of resultant SHM,

A=(7)2+(27)2+2×2×7 cos (π3)=7 cm

The maximum acceleration of the particle

amax=ω2A=25×7=175 cms2=175×102 ms2



Q 2 :

For a periodic motion represented by the equation Y=sinωt+cosωt 

The amplitude of the motion is                            [2023]

  • 0.5

     

  • 2

     

  • 1

     

  • 2

     

(2)

y=sinωt+cosωt

y=sinωt+sin(ωt+π2)

Δϕ=π2

Anet=12+12+2×1×1×cos(Δϕ)

Anet=2