Q 11 :

A particle oscillates along the x-axis according to the law, x(t)=x0sin2(t2) where x0=1 m. The kinetic energy (K) of the particle as a function of x is correctly represented by the graph.          [2025]

  •  

  •  

  •  

  •  

(1)

x(t)=x0sin2(t2)=x02(1cos t)

Clearly x02 is mean position, Particle is oscillating between



Q 12 :

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Knowing initial position x0 and initial momentum p0 is enough to determine the position and momentum at any time t for a simple harmonic motion with a given angular frequency ω.

Reason (R) : The amplitude and phase can be expressed in terms of x0 and p0.

In the light of the above statements, choose the correct answer from the options given below:          [2025]

  • Both (A) and (R) are true but (R) is NOT the correct explanation of (A).

     

  • (A) is false but (R) is true.

     

  • (A) is true but (R) is false.

     

  • Both (A) and (R) are true and (R) is the correct explanation of (A).

     

(4)

x=A sin (ωt+ϕ)

x0=A sin ϕ                                   ... (i)

p=mAω cos (ωt+ϕ)

p0=mAω cos ϕ                             ... (ii)

(ii)/(i)

 tan ϕ=(x0p0)mω

      sin ϕ=x0mω(mωx0)2+p02

From (i),

      A=x0sin ϕ=(mωx0)2+p02mω

Hence both position and linear momentum of a particle can be expressed as a function of time if we know initial momentum and position.



Q 13 :

Which of the following curves possibly represent one-dimensional motion of a particle?         [2025]

Choose the correct answer from the options given below:

  • A, B and D only

     

  • A, B and C only

     

  • A and B only

     

  • A, C and D only

     

(1)

A. Phase increase with time in SHM, ϕ = kt + C

For example, in SHM, x = A sin ϕ

 Correct

B. In SHM Velocity and displacement are related in elliptical/circular relation

i.e.v2+x2 = constant, it can be 1 D motion

 Correct

C. At same time particle can't have two velocities  Incorrect.

D. Distance always increases  Correct

Hence A, B and D are correct.



Q 14 :

A particle executes simple harmonic motion between x=-A and x=+A. If the time taken by A the particle to go from x=0 to A2 is 2 s, then the time A taken by the particle in going from x=A2 to A is                                   [2023]

  • 1.5 s

     

  • 3 s

     

  • 4 s

     

  • 2 s

     

(3)

[IMAGE 99]

Let time from 0 to A2 is t1 and from A2 to A is t2

Then ωt1=π6, ωt2=π3

t1t2=12, t2=2t1=2×2=4 sec



Q 15 :

The maximum potential energy of a block executing simple harmonic motion is 25 J. A is the amplitude of oscillation. At A2, the kinetic energy of the block is      [2023]

  • 37.5 J

     

  • 9.75 J

     

  • 18.75 J

     

  • 12.5 J

     

(3)

umax=12mω2A2=25 J

KE at A2=12mv12=12mω2(A2-A24)

KE=12mω23A24=34(12mω2A2)

KE=34×25=18.75 J



Q 16 :

A particle executes S.H.M. of amplitude A along the x-axis. At t=0, the position of the particle is x=A2 and it moves along the positive x-axis. The displacement of the particle is given by x=Asin(ωt+δ), then the value of δ will be                [2023]

  • π6

     

  • π3

     

  • π4

     

  • π2

     

(1)

x=Asin(ωt+δ)

    v=Aωcos(ωt+δ)

    A2=Asin(ωt+δ)

  v is +ve

At t=0, in 1st quadrant or 4th quadrant

     sinδ=12  δ=π6,5π6quadrant

 Common solution is δ=π6



Q 17 :

The variation of kinetic energy (KE) of a particle executing simple harmonic motion with the displacement (x), starting from mean position to extreme position (A),  is given by    [2023]

  • [IMAGE 100]

     

  • [IMAGE 101]

     

  • [IMAGE 102]

     

  • [IMAGE 103]

     

(4)

For a particle executing SHM

KE=12mω2(A2-x2)

When x=0, KE is maximum and when x=A, KE is zero, and the KE vs x graph is parabolic.



Q 18 :

A particle is executing Simple Harmonic Motion (SHM). The ratio of potential energy and kinetic energy of the particle when its displacement is half of its amplitude will be    [2023]

  • 1 : 1

     

  • 2 : 1

     

  • 1 : 4

     

  • 1 : 3

     

(4)

x=A2, P.E.=12kx2

K.E.=12kA2-12kx2

P.E.K.E.=x2A2-x2=A24(3A24)=13



Q 19 :

Which graph represents the difference between total energy and potential energy of a particle executing SHM vs its distance from mean position?      [2023]

  • [IMAGE 104]

     

  • [IMAGE 105]

     

  • [IMAGE 106]

     

  • [IMAGE 107]

     

(4)

T.E.-P.E.=K.E.

K.E.=12mω2(A2-x2)

Which is the equation of a downward parabola.



Q 20 :

A particle executes SHM of amplitude A. The distance from the mean position when its kinetic energy becomes equal to its potential energy is _______       [2023]

  • 2A

     

  • 2A

     

  • 12A

     

  • 12A

     

(3)

K.E.=P.E.

12Mω2(A2-x2)=12Mω2x2

A2-x2=x2A2=2×2

 x=±A2