Q 1 :

Water of mass m gram is slowly heated to increase the temperature from T1 to T2. The change in entropy of the water, given specific heat of water is 1 Jkg1 K1, is          [2025]

  • zero

     

  • m(T2T1)

     

  • m ln (T1T2)

     

  • m ln (T2T1)

     

(4)

dQ = msdT

dS=dQT=msdTT

S=msdTT=ms ln TfTi

S=m ln T2T1 as s=1



Q 2 :

A Carnot engine (E) is working between two temperatures 473 K and 273 K. In a new system two engines - engine E1 works between 473 K to 373 K and engine E2 works between 373 K to 273 K. If η12η1 and η2 are the efficiencies of the engines E, E1 and E2, respectively, then          [2025]

  • η12<η1+η2

     

  • η12=η1η2

     

  • η12=η1+η2

     

  • η12η1+η2

     

(1)

Efficiencies of a Carnot engine η=1TsinkTsource

 η1=1373 K473 K=100473

          η2=1273 K373 K=100373

         η12=1273 K473 K=200473

η12η1=200473100473=100473<100373

 η12η1<η2

or η12<η1+η2



Q 3 :

A Carnot engine with efficiency 50% takes heat from a source at 600 K. In order to increase the efficiency to 70%, keeping the temperature of the sink same, the new temperature of the source will be                           [2023]

  • 900 K

     

  • 300 K

     

  • 1000 K

     

  • 360 K

     

(3)

TL same

η=1-TLTH

50100=1-TL600

70100=1-TLTH

TL600=12, TLTH=310

TH=1000 K



Q 4 :

Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.                         [2023]

Assertion A: Efficiency of a reversible heat engine will be highest at –273°C temperature of cold reservoir.

Reason R: The efficiency of Carnot’s engine depends not only on temperature of cold reservoir but it depends on the temperature of hot reservoir too and is given as η=(1-T2T1).

In the light of the above statements, choose the correct answer from the options given below:

  • A is true but R is false

     

  • Both A and R are true but R is NOT the correct explanation of A

     

  • A is false but R is true

     

  • Both A and R are true and R is the correct explanation of A

     

(4)

η=1-TcoldThot

Tcold=0 Kη=1 (max)

Both A and R are true and R is the correct explanation of A.



Q 5 :

A Carnot engine operating between two reservoirs has efficiency 13. When the temperature of the cold reservoir is raised by x, its efficiency decreases to 16. The value of x, if the temperature of the hot reservoir is 99°C, will be                  [2023]

  • 16.5 K

     

  • 33 K

     

  • 66 K

     

  • 62 K

     

(4)

TH=99°C=99+273=372 K

1-THTC=13

TCTH=23    ...(1)

 TC=23×372=2×124=248 K

      1-TC+XTH=16

 56=248+X372

      248+X=5×62

 X=310-248=62 K



Q 6 :

Work done by a Carnot engine operating between temperatures 127°C and 27°C is 2 kJ. The amount of heat transferred to the engine by the reservoir is       [2023]

  • 8 kJ

     

  • 4 kJ

     

  • 2.67 kJ

     

  • 2 kJ

     

(1)

Efficiency of Carnot engine

η=1-T2T1=WQ1 WQ1=1-300400=14

 2 kJQ1=14

 Q1=8 kJ



Q 7 :

An engine operating between the boiling and freezing points of water will have                         [2023]

1.  efficiency more than 27%

2.  efficiency less than the efficiency of a Carnot engine operating between the same two temperatures

3.  efficiency equal to 27%

4.  efficiency less than 27%

  • 2, 3 and 4 only

     

  • 2 and 3 only

     

  • 2 and 4 only

     

  • 1 and 2 only

     

(3)

η=(1-273373)×100=26.8%



Q 8 :

The volume of an ideal gas increases 8 times and temperature becomes (14)th of the initial temperature during a reversible change. If there is no exchange of heat in this process (ΔQ=0), then identify the gas from the following options (assuming gases given in the options are ideal gases):          [2026]

  • CO2

     

  • NH3

     

  • O2

     

  • He

     

(4)