Q 1 :    

The specific heat at constant pressure of a real gas obeying PV2=RT equation is:                    [2024]

  • R3+Cv

     

  • R

     

  • Cv+R

     

  • Cv+R2V

     

(4) 

        dQ=dU+dW

         nCdT=nCvdT+dW, We need to find dW

        we have PV2=RT, P= constant

        differentiating, P2VdV=RdTPdV=R.dT2V

        Also, dW=PdV=R.dT2V

        For one mole of gas, C.dT=CvdT+R.dT2VC=Cv+R2V

 



Q 2 :    

A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is                            [2024]

  • 32

     

  • 75

     

  • 35

     

  • 53

     

(3) 

        (Cv)mono(Cv)dia=32R52R=35

 



Q 3 :    

If three moles of monoatomic gas (γ=53) is mixed with two moles of a diatomic gas (γ=75), the value of adiabatic exponent γ for the mixture is                                    [2024]

  • 1.75

     

  • 1.40

     

  • 1.52

     

  • 1.35

     

(3)    

         Monoatomic gas 3 mole

          Diatomic gas 2 mole

         γmix=1+2fmin                ....(1)

          fmix=n1f1+n2f2n1+n2=3(3)+2(5)5=195

          γmix=1+219/5=1+1019=2919

          γmix=1.53

 



Q 4 :    

A gas mixture consists of 8 moles of argon and 6 moles of oxygen at temperature T. Neglecting all vibrational modes, the total internal energy of the system is                     [2024]

  • 29RT

     

  • 20RT

     

  • 27RT

     

  • 21RT

     

(3) 

          U=nCVT 

          U=n1CV1  T+n2CV2 T

           8×3R2×T+6×5R2×T=27RT

 



Q 5 :    

Two moles a monoatomic gas is mixed with six moles of a diatomic gas. The molar specific heat of the mixture at constant volume is                      [2024]

  • 94R

     

  • 74R

     

  • 32R

     

  • 52R

     

(1) 

       CV=n1Cv1+n2Cv2n1+n2

          =2×32R+6×52R2+6

          =94R

           

 



Q 6 :    

For a diatomic gas, if γ1=(CpCv) for rigid molecules and γ2=(CpCv) for another diatomic molecules, but also having vibrational modes. Then, which one of the following options is correct?

(Cp and Cv are specific heats of the gas at constant pressure and volume)          [2025]

  • γ2>γ1

     

     

  • γ2=γ1

     

  • 2γ2>γ1

     

  • γ2<γ1

     

(4)

γ=2f+1

without vibration : f = 5 : γ1 = 1.4

without vibration : f = 7 : γ2 = 1.14

 γ2<γ1



Q 7 :    

In an adiabatic process, which of the following statements is true?          [2025]

  • The molar heat capacity is infinite

     

  • Work done by the gas equals the increase in internal energy

     

  • The molar heat capacity is zero

     

  • The internal energy of the gas decreases as the temperature increases

     

(3)

For adiabatic process, dQ = 0

  Molar heat capacity = 0

  dQ = 0  dU = –dW

Also, dU=f2nRdT

  Only option (3) is correct.



Q 8 :    

Match the List-I with List-II

  List-I   List-II
(A) Triatomic rigid gas (I) CpCv=53
(B) Diatomic non-rigid gas (II) CpCv=75
(C) Monoatomic gas (III) CpCv=43
(D) Diatomic rigid gas (IV) CpCv=97

Choose the correct answer from the options given below:          [2025]

  • A-III, B-IV, C-I, D-II

     

  • A-III, B-II, C-IV, D-I

     

  • A-II, B-IV, C-I, D-III

     

  • A-IV, B-II, C-III, D-I

     

(1)

γ=1+2f, f is degree of freedom

Triatomic rigid gas f=6  γ=1+26+43 (Triatomic)

Diatomic non-rigid gas f=7  γ=1+27+97 (Datomic, non-rigid)

Diatomic rigid gas f=5  γ=1+25+75 (Diatomic, rigid)

Monoatomic rigid gas f=3  γ=1+23+53 (Monoatomic, rigid)



Q 9 :    

The temperature of 1 mole of an ideal monoatomic gas is increased by 50°C at constant pressure. The total heat added and change in internal energy are E1 and E2, respectively. If E1E2=x9 then the value of x is ________.          [2025]



15

T = 50°C = 50 K

n = 1 mole of ideal gas

Q=nCPT=E1

U=nCVT=E2

 E1E2=x9=CPCV

For monoatomic gas γ=CPCV=53

x9=53  x=15



Q 10 :    

γA is the specific heat ratio of monoatomic gas A having 3 translational degrees of freedom. γB is the specific heat ratio of polyatomic gas B having 3 translational, 3 rotational degrees of freedom and 1 vibrational mode. If γAγB=(1+1n), then the value of n is ________.          [2025]



3

γ=1+2f

fA=3  γA=53

fB=3+3+2=8, γB=1+28=54

γAγB=43=1+13  n=3