Q 1 :    

The specific heat at constant pressure of a real gas obeying PV2=RT equation is:                    [2024]

  • R3+Cv

     

  • R

     

  • Cv+R

     

  • Cv+R2V

     

(D)   dQ=dU+dW

         nCdT=nCvdT+dW, We need to find dW

        we have PV2=RT, P= constant

        differentiating, P2VdV=RdTPdV=R.dT2V

        Also, dW=PdV=R.dT2V

        For one mole of gas, C.dT=CvdT+R.dT2VC=Cv+R2V

 



Q 2 :    

A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is                            [2024]

  • 32

     

  • 75

     

  • 35

     

  • 53

     

(C)   (Cv)mono(Cv)dia=32R52R=35

 



Q 3 :    

If three moles of monoatomic gas (γ=53) is mixed with two moles of a diatomic gas (γ=75), the value of adiabatic exponent γ for the mixture is                                    [2024]

  • 1.75

     

  • 1.40

     

  • 1.52

     

  • 1.35

     

(C)    Monoatomic gas 3 mole

          Diatomic gas 2 mole

         γmix=1+2fmin                ....(1)

          fmix=n1f1+n2f2n1+n2=3(3)+2(5)5=195

          γmix=1+219/5=1+1019=2919

          γmix=1.53

 



Q 4 :    

A gas mixture consists of 8 moles of argon and 6 moles of oxygen at temperature T. Neglecting all vibrational modes, the total internal energy of the system is                     [2024]

  • 29RT

     

  • 20RT

     

  • 27RT

     

  • 21RT

     

(C)   U=nCVT 

          U=n1CV1  T+n2CV2 T

           8×3R2×T+6×5R2×T=27RT

 



Q 5 :    

Two moles a monoatomic gas is mixed with six moles of a diatomic gas. The molar specific heat of the mixture at constant volume is                      [2024]

  • 94R

     

  • 74R

     

  • 32R

     

  • 52R

     

(A)   CV=n1Cv1+n2Cv2n1+n2

          =2×32R+6×52R2+6

          =94R