Q 21 :

At 300 K, the rms speed of oxygen molecules is α+5α times to that of its average speed in the gas. Then, the value of α will be (use π=227)            [2023]

  • 32

     

  • 28

     

  • 24

     

  • 27

     

(2)

3RTM=α+5α8πRTM

3=α+5α8π  α=28



Q 22 :

Heat energy of 735 J is given to a diatomic gas allowing the gas to expand at constant pressure. Each gas molecule rotates around an internal axis but does not oscillate. The increase in the internal energy of the gas will be               [2023]

  • 525 J

     

  • 441 J

     

  • 572 J

     

  • 735 J

     

(2)

ΔQ=nCpΔT=735 J

5nRΔT2=735 J

ΔU=nCvΔT=32(nRΔT)=32×25×735=441 J



Q 23 :

The average kinetic energy of a molecule of the gas is                [2023]

  • proportional to absolute temperature

     

  • proportional to volume

     

  • proportional to pressure

     

  • dependent on the nature of the gas

     

(1)

Translational K.E. on average of a molecule is 32kT, which is independent of nature, pressure, and volume.



Q 24 :

The temperature of an ideal gas is increased from 200 K to 800 K. If the r.m.s. speed of the gas at 200 K is v0, then the r.m.s. speed of the gas at 800 K will be       [2023]

  • v0

     

  • 4v0

     

  • v04

     

  • 2v0

     

(4)

Vrms=3RTMVrmsT

Increasing the temperature 4 times, the rms speed gets doubled.



Q 25 :

An air bubble of volume 1 cm3 rises from the bottom of a lake 40 m deep to the surface at a temperature of 12°C. The atmospheric pressure is 1×105 Pa, the density of water is 1000 kg/m3 and g=10 m/s2. There is no difference of the temperature of water at the depth of 40 m and on the surface. The volume of the air bubble when it reaches the surface will be                [2023]

  • cm3

     

  • cm3

     

  • cm3

     

  • cm3

     

(3)

P=P0+ρgh=105 Pa+103×10×40=5×105 Pa

At T is constant, PV=P0V0

5×105 Pa×1 cm3=105 Pa×V0V0=5 cm3



Q 26 :

Three vessels of equal volume contain gases at the same temperature and pressure. The first vessel contains neon (monoatomic), the second contains chlorine (diatomic) and the third contains uranium hexafluoride (polyatomic). Arrange these on the basis of their root mean square speed (vrms) and choose the correct answer from the options given below:                    [2023]

  • vrms(mono)=vrms(dia)=vrms(poly)

     

  • vrms(mono)>vrms(dia)>vrms(poly)

     

  • vrms(dia)<vrms(poly)<vrms(mono)

     

  • vrms(mono)<vrms(dia)<vrms(poly)

     

(2)

vrms(mono)=3RT4×10-3

vrms(dia)=3RT71×10-3

vrms(poly)=3RT146×10-3

So the correct relation is

vrms(mono)>vrms(dia)>vrms(poly)



Q 27 :

The root mean square speed of molecules of nitrogen gas at 27°C is approximately: 

(Given mass of a nitrogen molecule =4.6×10-26 kg and take Boltzmann constant kB=1.4×10-23 JK-1)          [2023]

  • 523 m/s

     

  • 1260 m/s

     

  • 91 m/s

     

  • 27.4 m/s

     

(1)

Vrms=3kBTm=3×1.4×10-23×3004.6×10-26=523 m/s



Q 28 :

If the r.m.s. speed of chlorine molecule is 490 m/s at 27°C, the r.m.s. speed of argon molecules at the same temperature will be (Atomic mass of argon = 39.9 u, molecular mass of chlorine = 70.9 u)             [2023]

  • 751.7 m/s

     

  • 451.7 m/s

     

  • 651.7 m/s

     

  • 551.7 m/s

     

(3)

Vrms=3RTM, vArvCl=MClMAr

 VAr=1.33×490=651.7 m/s



Q 29 :

The r.m.s. speed of oxygen molecule in a vessel at a particular temperature is (1+5x)1/2v, where v is the average speed of the molecule. The value of x will be: (Take π=227)          [2023]

  • 28

     

  • 27

     

  • 8

     

  • 4

     

(1)

3RTM=(1+5x)128RTπM

 3×227×8=1+5xx=28



Q 30 :

The mean free path of molecules of a certain gas at STP is 1500 d, where d is the diameter of the gas molecules. While maintaining the standard pressure, the mean free path of the molecules at 373 K is approximately                    [2023]

  • 1098d

     

  • 2049d

     

  • 750d

     

  • 1500d

     

(2)

Mean free path, λ=RT2πd2NAP

λT

1500dλ=273373  λ=2049d