Q 11 :    

Two resistance of 100Ω and 200Ω are connected in series with a battery of 4V and negligible internal resistance. A voltmeter is used to measure voltage across 100Ω resistance, which gives reading as 1V. The resistance of voltmeter must be ________ Ω.             [2024]



(200)

Given potential across Voltmeter = 1V

Current in 100Ω=1100A=i1

200Ω=3100Aas total potential =4V1&1V is drop across 100Ω

Let current in voltmeter = i

i1+i2=i0

i2+1100=3200

i2+3200-1100=1200A1

V=IR11=1200(r),r=200Ω



Q 12 :    

Consider a moving coil galvanometer (MCG):

A. The torsional constant in moving coil galvanometer has dimensions [ML2T1]

B. Increasing the current sensitivity may not necessarily increase the voltage sensitivity.

C. If we increase number of turns (N) to its double (2N), then the oltage sensitivity doubles.

D. MCG can be converted into an ammeter by introducing a shunt resistance of large value in parallel with galvanometer.

E. Current sensitivity of MCG depends inversely on number of turns of coil.

Choose the correct answer from the options given below:          [2025]

  • A, B only

     

  • A, D only

     

  • B, D, E only

     

  • A, B, E only

     

(1)

(A) τ=Cθ  [ML2T2]=[C][1]

(B) C.S.=θI=BNAC;

       V.S.=BNARC    [R = also depends on 'N']

(C) V.S.NABCR  RNR

(D) Shunt of law of resistance, False [Theory]

(E) E [False] C.S  N

      C.S=NABC



Q 13 :    

A galvanometer having a coil of resistance 30 Ω need 20 mA of current for full-scale deflection. If a maximum current of 3 A is to be measured using this galvanometer, the resistance of the shunt to be added to the galvanometer should be 30XΩ, where X is          [2025]

  • 447

     

  • 298

     

  • 149

     

  • 596

     

(3)

Figure

IgRg=(IIg)rs

20×103×30=(30.02)×rs

rs=(0.62.98)=30x

x=(2.98×300.6)=149



Q 14 :    

In a moving coil galvanometer, two moving coils M1 and M2 have the following particulars:

R1=5Ω, N1=15, A1=3.6×103m2, B1=0.25T

R2=7Ω, N2=21, A2=1.8×103m2, B2=0.50T

Assuming that torsional constant of the springs are same for both coils, what will be the ratio of voltage sensitivity of M1 and M2?          [2025]

  • 1 : 1

     

  • 1 : 4

     

  • 1 : 3

     

  • 1 : 2

     

(1)

Kθ=NIAB  θI=NABK

Voltage sensitivity =θV=θRI=NABKR

Ratio of voltage sensitivity =(N1A1B1R1)(R2N2A2B2)

Ratio =(N1A1B1N2A2B2)R2R1=15×3.6×0.2521×1.8×0.5×75=11