The induced emf can be produced in a coil by [2023]
A. moving the coil with uniform speed inside uniform magnetic field
B. moving the coil with non-uniform speed inside uniform magnetic field
C. rotating the coil inside the uniform magnetic field
D. changing the area of the coil inside the uniform magnetic field
Choose the correct answer from the options given below:
B and C only
B and D only
C and D only
A and C only
(3)
Moving a coil inside a uniform magnetic field either with uniform or non-uniform speed doesn’t change flux, so no emf is induced.

An emf of 0.08 V is induced in a metal rod of length 10 cm held normal to a uniform magnetic field of 0.4 T, when it moves with a velocity of [2023]
(2)

A 1 m long metal rod XY completes the circuit as shown in the figure. The plane of the circuit is perpendicular to the magnetic field of flux density 0.15 T. If the resistance of the circuit is , the force needed to move the rod in the direction, as indicated, with a constant speed of 4 m/s will be ________ . [2023]

(18)
A metallic cube of side 15 cm moving along y-axis at a uniform velocity of . In a region of uniform magnetic field of magnitude 0.5 T directed along z-axis. In equilibrium the potential difference between the faces of higher and lower potential developed because of the motion through the field will be _________ mV. [2023]

(150)
A 20 cm long metallic rod is rotated with 210 rpm about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field 0.2 T parallel to the axis exists everywhere. The emf developed between the centre and the ring is _________ mV. Take . [2023]
(88)

In an AC generator, a rectangular coil of 100 turns each having area is rotated at 360 rev./min. about an axis perpendicular to a uniform magnetic field of magnitude 3.0 T. The maximum value of the emf produced will be _________ V. (Take ) [2023]
(1584)