Q 1 :    

In a coil, the current changes from -2A to +2A in 0.2 s and induces an emf 0.1 V. The self-inductance of the coil is:               [2024]

  • 4 mH

     

  • 5 mH

     

  • 2.5 mH

     

  • 1 MH

     

(2)     

           (Emf)induced=-Ldidt

           In magnitude form,

           |Emfind|=|(-)Ldidt|

           0.1=(L)[+2-(-2)]0.2L=0.1×0.24=5mH

 



Q 2 :    

The current in an inductor is given by I=(3t+8) where t is in second. The magnitude of induced emf produced in the inductor is 12 mV. The self-inductance of the inductor ________ mH.                 [2024]



(4)      ||=Ldidt

          i=|3t+8|didt=3

          ε=12mV

          |ε|=L|dIdt|12=L×3

          L=4mH

 



Q 3 :    

Two coils have mutual inductance 0.002H. The current changes in the first coil according to the relation i=i0sinωt, where i0=5A and ω=50π rad/s. The maximum value of emf in the second coil is πα V. The value of α is _____.                              [2024]



(2)     ϕ=Mi=Mi0sinωt

         EMF=-Mdidt=-0.002(i0ωcosωt)

         EMFmax=i0ω(0.002)=(5)(50π)(0.002)

         EMFmax=π2V



Q 4 :    

Two conducting circular loops A and B are placed in the same plane with their centres coinciding as shown in figure. The mutual inductance between them is           [2024]

  • μ0πb22a

     

  • μ0πa22b

     

  • μ02π·b2a

     

  • μ02π·a2b

     

(2)

Magnetic flux through smaller loop, ϕ=Mi=BA

ϕ=(μ0i2b)·πa2=Mi

M=μ0πa22b



Q 5 :    

A small square loop of wire of side L is placed inside a large square loop of wire of side L(L=l2). The loops are coplanar and their centers coincide. The value of the mutual inductance of the system is x×10-7H, where x= ____.                  [2024]



(128)

Flux linkage for inner loop.

ϕ=Bcenter·l2=4×μ0i4πL2(sin45+sin45)l2

ϕ=22μ0iπLl2

M=ϕi=22μ0l2πL=22μ0π

=224ππ×10-7=128×10-7 H

x=128



Q 6 :    

Regarding self-inductance:

A. The self-inductance of the coil depends on its geometry.

B. Self-inductance does not depend on the permeability of the medium.

C. Self-induced e.m.f. opposes any change in the current in a circuit.

D. Self-inductance is electromagnetic analogue of mass in mechanics.

E. Work needs to be done against self-induced e.m.f. in establishing the current.

Choose the correct answer from the options given below:          [2025]

  • A, B, C, D only

     

  • A, C, D, E only

     

  • A, B, C, E only

     

  • B, C, D, E only

     

(2)

Self-inductance of coil

L=μ0μrN22πR



Q 7 :    

Consider I1 and I2 are he currents flowing simultaneously in two nearby coils 1 and 2, respectively. If L1 = self-inductance of coil 1, M12 = mutual inductance of coil 1 with respect to coil 2, then the value of induced emf in coil 1 will be          [2025]

  • ε1=L1dI1dt+M12dI2dt

     

  • ε1=L1dI1dtM12dI1dt

     

  • ε1=L1dI1dtM12dI2dt

     

  • ε1=L1dI2dt+M12dI1dt

     

(3)

ϕ1=L1I1+M12I2

ε1=dϕ1dt=L1dI1dtM12dI2dt

Magnitude of induced emf due to self-inductance, =LdI1dt

Magnitude of induced emf due to mutual inductance, =MdI1dt