Q 11 :

Two isolated metallic solid spheres of radii R and 2R are charged such that both have same charge density σ. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is σ', the ratio σ'σ is:                 [2023]

  • 94

     

  • 43

     

  • 53

     

  • 56

     

(4)

[IMAGE 148]

Q1'4πε0R=Q2'4πε0(2R)

 Q2'=2Q1'

Q1'+Q2'=Q1+Q2

  Q2'2+Q2'=20πR2σ

  32Q2'=20πR2σ

  Q2'4π(2R)2=23 20πR2σ16πR2

  σ'σ=56



Q 12 :

Which of the following correctly represents the variation of electric potential (V) of a charged spherical conductor of radius (R) with radial distance (r) from the centre?            [2023]

  • [IMAGE 149]

     

  • [IMAGE 150]

     

  • [IMAGE 151]

     

  • [IMAGE 152]

     

(3)

[IMAGE 153]



Q 13 :

Considering a group of positive charges, which of the following statements is correct?                  [2023]

  • Net potential of the system cannot be zero at a point but net electric field can be zero at that point.

     

  • Net potential of the system at a point can be zero but net electric field can't be zero at that point.

     

  • Both the net potential and the net field can be zero at a point.

     

  • Both the net potential and the net electric field cannot be zero at a point.

     

(1)

V=KQiri

Here, Qi and ri are positive

  V>0



Q 14 :

A point charge 2×10-2C is moved from P to S in a uniform electric field of 30 N C-1 directed along positive x-axis. If coordinates of P and S are (1, 2, 0) m and (0,0,0) m respectively, the work done by electric field will be                 [2023]

  • 1200 mJ

     

  • 600 mJ

     

  • − 600 mJ

     

  • − 1200 mJ

     

(3)

WE=qE·S

       =2×10-2[30i^·(-i^)]

        =2×10-2(-30)=-60×10-2

         =-60100=-0.6 J=-600 mJ



Q 15 :

For a uniformly charged thin spherical shell, the electric potential (V) radially away from the centre (O) of the shell can be graphically represented as         [2023]

[IMAGE 154]

  • [IMAGE 155]

     

  • [IMAGE 156]

     

  • [IMAGE 157]

     

  • [IMAGE 158]

     

(1)

Vinside=kQR

Voutside=kQr



Q 16 :

Electric potential at a point 'P' due to a point charge of 5×10-9 C is 50 V. The distance of 'P' from the point charge is

(Assume, 14πε0=9×10-9 Nm2C-2)     [2023]

  • 3 cm

     

  • 90 cm

     

  • 9 cm

     

  • 0.9 cm

     

(2)

VP=KQr

50=9×109×5×10-9r

r=4550=910=0.9 m=90 cm



Q 17 :

For a charged spherical ball, electrostatic potential inside the ball varies with r as V=2ar2+b. Here, a and b are constants and r is the distance from the center. The volume charge density inside the ball is -λaε. The value of λ is _________.  (ε=permittivity of the medium)           [2023]



(12)

E=-dVdr=-4arρr3ε0 (compare)

Result inside uniformly charged solid sphere.

ρ=-12aε0

λ=12



Q 18 :

Three concentric spherical metallic shells X, Y and Z of radius a, b and c respectively (a<b<c) have surface charge densities σ, -σ and σ, respectively. The shells X and Z are at the same potential. If the radii of X and Y are 2 cm and 3 cm, respectively, the radius of shell Z is ________ cm.       [2023]



(5)

[IMAGE 159]

qx=σ4πa2,  qy=-σ4πb2,  qz=σ4πc2

Potential at x=potential at z

Vx=Vz

qx4πε0a+qy4πε0b+qz4πε0c=qx4πε0c+qy4πε0c+qz4πε0c

σ4πa2a-σ4πb2b+σ4πc2c=4πσ(a2-b2+c2)c

c(a-b+c)=a2-b2+c2

c(a-b)=a2-b2

  c=a+b  c=5 cm



Q 19 :

64 identical drops, each charged up to a potential of 10 mV are combined to form a bigger drop. The potential of the bigger drop will be ______ mV.          [2023]



(160)

[IMAGE 160]

Let q=charge on each drop

        V=Kqr                                                ...(i)

Now for combination of 64 drops

      64×43πr3=43πR3

      R=4r and Q=64q

Potential of bigger drop =KQR=K(64q)4r=16Kqr

                                               =16×10 mV=160 mV

Correct answer is 160