Q 1 :    

A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V. The battery is now disconnected and a dielectric slab (εr=6) is inserted between the plates. The change in its potential energy after inserting the dielectric slab is _______ ×10-12J.                     [2024]



(750)       Before inserting dielectric, capacitance is given as C0=12.5 pF and charge on the capacitor is Q=C0V. After inserting dielectric capacitance will become Cf=εrC0.

                Change in potential energy of the capacitor

                U=U0-Uf=Q22C0-Q22Cf=Q22C0[1-1εr]

                 U=(C0V)22C0[1-1εr]=12C0V2[1-1εr]

                 Using C0=12.5 pF, V=12 V, εr=6

                 U=12(12.5)×122[1-16]=12(12.5)×122×56

                  =750pJ=750×10-12J

 

 



Q 2 :    

A parallel plate capacitor with plate separation 5mm is charged up by a battery. It is found that on introducing a dielectric sheet of thickness 2 mm, while keeping the battery connections intact, the capacitor draws 25% more charge from the battery than before. The dielectric constant of the sheet is __________.            [2024]



(2)     Without dielectric Q=A0dV

           with dielectric

                         Q=A0Vd-t+tK

           Given A0Vd-t+tK=(1.25)A0Vd

            1.25(3+2K)=5K=2

 



Q 3 :    

A capacitor has air as dielectric medium and two conducting plates of area 12 cm2 and they are 0.6 cm apart. When a slab of dielectric having area 12 cm2 and 0.6 cm thickness is inserted between the plates, one of the conducting plates has to be moved by 0.2 cm to keep the capacitance same as in previous case. The dielectric constant of the slab is

(Given ε0=8.834×10-12 F/m)         [2024]

  • 1

     

  • 0.66

     

  • 1.33

     

  • 1.50

     

(4)

Parallel plate capacitance, C=ϵoAd1

For partially filled capacity, C=ϵoA(d2-t+tk)

For case (i) C1=ϵoA0.6, For case (ii) C2=ϵoA0.8-0.6+0.6K

Now C1=C2,ϵoA0.6=ϵoA0.2+0.6K,

0.6=0.2+0.6KK=32



Q 4 :    

Consider a parallel plate capacitor of area A (of each plate) and separation 'd' between the plates. If E is the electric field and ε0 is the permittivity of free space between the plates, then potential energy stored in the capacitor is          [2025]

  • 12ε0E2Ad

     

  • 34ε0E2Ad

     

  • 14ε0E2Ad

     

  • ε0E2Ad

     

(1)

We know energy density

ρav=12ε0E2

So potential energy =ρav× Volume

 P.E.=12ε0E2Ad



Q 5 :    

A parallel plate capacitor was made with two rectangular plates, each with a length of l = 3 cm and breath of b = 1 cm. The distance between the plates is 3 μm. Out of the following, which are the ways to increase the capacitance by a factor of 10?

A. l = 30 cm, b = 1 cm, d = 1 μm

B. l = 3 cm, b = 1 cm, d = 30 μm

C. l = 6 cm, b = 5 cm, d = 3 μm

D. l = 1 cm, b = 1 cm, d = 10 μm

E. l = 5 cm, b = 2 cm, d = 1 μm

Choose the correct answer from the options given below:          [2025]

  • C and E only

     

  • B and D only

     

  • A only

     

  • C only

     

(1)

We know C=Aε0d=blε0d

So, to increase the capacitance by factor 10(Ad) has to increase by factor 10.

For option (A)     C'=30C

For option (B)     C'=C10

For option (C)     C'=10C

For option (D)     C'=C10

For option (E)     C'=10C



Q 6 :    

A parallel plate capacitor of capacitance 1 μF is charged to a potential difference of 20 V. The distance between plates is 1 μF. The energy density between plates of capacitor is :          [2025]

  • 1.8×103J/m3

     

  • 2×104J/m3

     

  • 2×102J/m3

     

  • 1.8×105J/m3

     

(1)

Energy density u=12ε0E2=12ε0(Vd)2

 u=12(8.85×1012)(20106)2J/m3=1.8×103J/m3



Q 7 :    

A parallel-plate capacitor of capacitance 40 μF is connected to a 100 V power supply. Now the intermediate space between the plates is filled with a dielectric material of dielectric constant K = 2. Due to the introduction of dielectric material, the extra charge and the change in the electrostatic energy in the capacitor, respectively, are          [2025]

  • 2 mC and 0.2 J

     

  • 8 mC and 2.0 J

     

  • 4 mC and 0.2 J

     

  • 2 mC and 0.4 J

     

(3)

C=40 μF, C'=kC=80 μF

V = 100 V

Q = CV = 4 mC

Q'=C'V=8 mC

 Extra charge, Q = 4 mC

U1=12CV2, U2=12C'V2

U=12(C'C)V2=12×40×104×106=0.2 J



Q 8 :    

A parallel plate capacitor is filled equally (half) with two dielectrics of dielectric constant ε1 and ε2, as shown in figures. The distance between the plates is d and area of each plate is A. If capacitance in first configuration and second configuration are C1 and C2 respectively, then C1C2 is          [2025]

  • ε1ε22(ε1+ε2)2

     

  • 4ε1ε2(ε1+ε2)2

     

  • ε1ε2ε1+ε2

     

  • ε0(ε1+ε2)2

     

(2)

C1=ε0Ad2ε1+d2ε2=ε0Ad{1ε2+ε12ε1ε2}

C2=ε0d(ε1A2+ε2A2)=ε0Ad{ε12+ε22}

C1C2=2ε1ε2(ε2+ε1)(ε1+ε2)2=4ε1ε2(ε1+ε2)2



Q 9 :    

Three parallel plate capacitors C1,C2 and C3 each of capacitance 5 μF are connected as shown in figure. The effective capacitance between points A and B, when the space between the parallel plates of C1 capacitor is filled with a dielectric medium having dielectric constant of 4, is          [2025]

  • 22.5 μF

     

  • 7.5 μF

     

  • μF

     

  • 30 μF

     

(3)

Ceq=(KC·CKC+C)+C=(KK+1)C+C

 Ceq=45×5+5=9 μF



Q 10 :    

A parallel plate capacitor has charge 5×106C. A dielectric slab is inserted between the plates and almost fills the space between the plates. If the induced charge on one face of the slab is 4×106C then the dielectric constant of the slab is __________        [2025]



(5)

Enet=E0Ein

Ein=E0(11k)

Qin=Q0(11k)

4×106=5×106(11k)  k=5