Q 1 :    

A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V. The battery is now disconnected and a dielectric slab (εr=6) is inserted between the plates. The change in its potential energy after inserting the dielectric slab is _______ ×10-12J.                     [2024]



(750)       Before inserting dielectric, capacitance is given as C0=12.5 pF and charge on the capacitor is Q=C0V. After inserting dielectric capacitance will become Cf=εrC0.

                Change in potential energy of the capacitor

                U=U0-Uf=Q22C0-Q22Cf=Q22C0[1-1εr]

                 U=(C0V)22C0[1-1εr]=12C0V2[1-1εr]

                 Using C0=12.5 pF, V=12 V, εr=6

                 U=12(12.5)×122[1-16]=12(12.5)×122×56

                  =750pJ=750×10-12J

 

 



Q 2 :    

A parallel plate capacitor with plate separation 5mm is charged up by a battery. It is found that on introducing a dielectric sheet of thickness 2 mm, while keeping the battery connections intact, the capacitor draws 25% more charge from the battery than before. The dielectric constant of the sheet is __________.            [2024]



(2)     Without dielectric Q=A0dV

           with dielectric

                         Q=A0Vd-t+tK

           Given A0Vd-t+tK=(1.25)A0Vd

            1.25(3+2K)=5K=2

 



Q 3 :    

A capacitor has air as dielectric medium and two conducting plates of area 12 cm2 and they are 0.6 cm apart. When a slab of dielectric having area 12 cm2 and 0.6 cm thickness is inserted between the plates, one of the conducting plates has to be moved by 0.2 cm to keep the capacitance same as in previous case. The dielectric constant of the slab is

(Given ε0=8.834×10-12 F/m)         [2024]

  • 1

     

  • 0.66

     

  • 1.33

     

  • 1.50

     

(4)

Parallel plate capacitance, C=ϵoAd1

For partially filled capacity, C=ϵoA(d2-t+tk)

For case (i) C1=ϵoA0.6, For case (ii) C2=ϵoA0.8-0.6+0.6K

Now C1=C2,ϵoA0.6=ϵoA0.2+0.6K,

0.6=0.2+0.6KK=32