Q 1 :

Nature of roots of quadratic equation 2x24x+3=0 is

  • real

     

  • equal

     

  • not real

     

  • none of them

     

(3)

D=b24ac=424×2×3=1624=8<0

Since D<0

Hence, roots are not real.

 



Q 2 :

Let p be a prime number. The quadratic equation having its roots as factors of p is

  • x2-px+p=0

     

  • x2-(p+1)x+p=0

     

  • x2+(p+1)x+p=0

     

  • x2-px+p+1=0

     

(2)

Factors of p=p×1

 Roots are p and 1.

The quadratic equation is:

x2-(sum of roots)x+product of roots=0

x2-(p+1)x+p=0

 

 



Q 3 :

If the roots of equation ax2+bx+c=0, a0 are real and equal, then which of the following relation is true?

  • a=b2c  

     

  • b2=ac  

     

  • ac=b24  

     

  • c=b2a

     

(3)

If the discriminant is equal to zero, i.e., b2-4ac=0 where a, b, c are real numbers and a0, then roots of the quadratic equation ax2+bx+c=0, are real and equal b2-4ac=0ac=b24

 



Q 4 :

If x = 5 is a solution of the quadratic equation 2x2+(k-1)x+10=0, then the value of k is :

  • 11

     

  • – 11

     

  • 13

     

  • – 13

     

(2)        – 11

 



Q 5 :

The quadratic equation x2+x+1=0 has ................. roots.

  • real and equal

     

  • irrational

     

  • real and distinct

     

  • not-real

     

(4)

Given equation is x2+x+1=0

Where a=1, b=1, c=1

D=b2-4ac=(1)2-4×1×1

D=-3

Where D<0

When D<0 roots are not-real.



Q 6 :

The real roots of the equation x2/3 + x1/3- 2 = 0  are:

(i) 1     (ii) -8     (iii) -1     (iv) 8

 

Choose the correct option from the following:

  • (i) and (ii)

     

  • (i) and (iv)

     

  • (iii) and (iv)

     

  • (ii) and (iii)     

     

(1)

Given equation is x2/3 + x1/3- 2 = 0 

⇒ t² + t - 2 = 0     (Take x1/3 = t)

⇒ t² + 2t - t - 2 = 0

⇒ t(t + 2) - 1(t + 2) = 0     ⇒ (t + 2)(t - 1) = 0

The roots of above equation are t = 1 and t = -2.

If t = 1, then x = 1.

If t = -2, then x = -8.

 



Q 7 :

If ‘p’ is a root of the quadratic equation x2(p+q)x+k=0,  then the value of k is:

  • p

     

  • q

     

  • p + q 

     

  • pq

     

Since p is a root of the quadratic equation

x2(p+q)x+k=0,
we have
p2(p+q)p+k=0p2p2pq+k=0k=pq



Q 8 :

The sum of the roots of  4x²  3x  5 = 0 is:

  • 1/4

     

  • -3/4

     

  • 4/3

     

  • 3/4

     

(4)

Given quadratic equation: 4x²  3x  5 = 0. Sum of roots = -b/a = 3/4

 



Q 9 :

If ½ is a root of the equation x² + kx  5/4 = 0, then the value of k is

  • 2

     

  • -2

     

  • 1/4

     

  • 1/2

     

(1)

Given equation: x² + kx  5/4 = 0. Since ½ is a root,(½)² + k ½  5/4 = 0    1/4 + k/2  5/4 = 0    k/2  1 = 0    k = 2

 



Q 10 :

The product of roots of the equation 9x² + 3/4 x  2 = 0 is

  • 2

     

  • -2/9

     

  • 9/2

     

  • 1/9

     

(2)

Given quadratic equation: 9x² + 3/4 x  2 = 0.

Product of roots = c/a = -2/9