Q 11 :

If one root of the equation 5x²  13x + k = 0 is reciprocal of the other, then k = ?

  • 0

     

  • 5

     

  • 6

     

  • 1/6

     

(2)

Given quadratic equation: 5x²  13x + k = 0. Since one root is reciprocal of the other,

Product of roots = 1    c/a = 1    c = a    k = 5

 



Q 12 :

If one root of the equation 2x²  10x + p = 0 is 2, then the value of p is:

  • -3

     

  • -6

     

  • 9

     

  • 12

     

(4)

Since 2 is a root, 2(2)²  10(2) + p = 0    8  20 + p = 0    p = 12

 



Q 13 :

The roots of the quadratic equation x² + 5x  (a + 1)(a + 6) = 0, where a is a constant, are:

 

(i) (a + 1)  (ii) –(a + 6)  (iii) (a + 6)  (iv) –(a + 1)

 

Choose the correct option from the following:

  • (i) and (iii)

     

  • (i) and (ii)

     

  • (iii) and (iv)

     

  • (ii) and (iv)

     

(2)

As observed, the sum of roots is –5 and product of roots is –(a + 1)(a + 6). This is possible only when the roots are (a + 1) and –(a + 6).

 



Q 14 :

If x = –2 and 3/4 are the roots of the quadratic equation Ax² + Bx  6 = 0, based on this what can you say about the nature of values A and B?

(i) Both are positive numbers.
(ii) One is positive and the other is negative.
(iii) Both are odd.
(iv) Sum of A and B is an odd number.

 

Choose the correct option from the following

  • Only (ii) and (iii) are correct

     

  • Only (i) and (ii) are correct

     

  • Only (i) and (iv) are correct

     

  • Only (iii) and (iv) are correct

     

(3)

Given, x = –2 and 3/4 are roots of the quadratic equation Ax² + Bx  6 = 0.

Product of roots = 6/A    (2 × 3/4) = 6/A    A = 4
Sum of roots = B/A    (2 + 3/4) = B/4    5/4 = B/4    B = 5

Both A and B are positive numbers and sum of A and B is an odd number.



Q 15 :

If the roots of equation ax² + bx + c = 0, a  0 are real and equal, then which of the following relation is true?

  • a = 2b²/c

     

  • b² = 2ac

     

  • ac = b²/4

     

  • c = 4b²/a

     

(3)

Given equation is ax² + bx + c = 0, a  0.
For real and equal roots, D = 0.

 b²  4ac = 0  b² = 4ac  b²/4 = ac

 



Q 16 :

If the quadratic equation ax² + bx + c = 0, a  0 has two real and equal roots, then ‘c’ is equal to

  • −b/2a

     

  • b/2a

     

  • b²/4a

     

  • b²/4a

     

(4)

Given quadratic equation ax² + bx + c = 0, a  0.
For real and equal roots, discriminant = 0.

 b²  4ac = 0  b² = 4ac  c = b²/4a

 



Q 17 :

The quadratic equation x²  4x + k = 0 has distinct real roots if:

  • k = 4

     

  • k > 4

     

  • k = 16

     

  • k < 4

     

(4)

Given x²  4x + k = 0. For distinct real roots, D > 0.

 (4)²  4×1×k > 0  16  4k > 0  16 > 4k  k < 4.

 



Q 18 :

The value(s) of k for which the quadratic equation 2x² + kx + 2 = 0 has equal roots, is/are

  • 4

     

  • ±4

     

  • -4

     

  • 0

     

(2)

Given quadratic equation is 2x² + kx + 2 = 0.
For equal roots, discriminant = 0.

 k²  4×2×2 = 0  k²  16 = 0  k = ±4

 



Q 19 :

(x² + 1)²  x² = 0 has

  • Four real roots

     

  • Two real roots

     

  • No real roots

     

  • One real root

     

(3)

Given equation: (x² + 1)²  x² = 0  (x² + 1  x)(x² + 1 + x) = 0.

 (x²  x + 1)(x² + x + 1) = 0      or    x²  x + 1 = 0,
Its  discriminant D = (1)²  4×1×1 = 3 < 0
Its  discriminant D = 1²  4×1×1 = 3 < 0

So, there are no real roots.

 



Q 20 :

The possible values of k for which the quadratic equation 9x²  3kx + k = 0 has real and distinct roots:

(i) 2  (ii) 0  (iii) 5  (iv) 6

 

Choose the correct option from the following

  • (i) and (ii) 

     

  • (iii) and (iv)

     

  • (i), (ii) and (iii) 

     

  • (i), (iii) and (iv)

     

(2)

For real and distinct roots, the discriminant (D) of the equation 9x²  3kx + k = 0 must be greater than zero.

D = (3k)²  4×9×k > 0  9k²  36k > 0  9k(k  4) > 0

This inequality implies that k < 0 or k > 4.
Therefore, the possible values of k are (iii) and (iv).