Q 11 :

Consider the following statements:

(i) If two circles touch internally then the distance between their centres is equal to the difference of their radii.

(ii) Distance moved by a rotating wheel in one revolution is equal to twice the circumference of wheel.

(iii) Area enclosed by two concentric circles of radius ‘r’ and ‘R’ (R > r), is π(R2-r2)

(iv) If two circles touch externally, then the distance between their centres is equal to the difference of their radii.

Which of the above statements are correct? Choose the correct option from the following..

  • (i) and (ii)

     

  • (ii) and (iii)

     

  • (i) and (iii)

     

  • (iii) and (iv)

     

(3)

Let two circles touch internally (see Fig.)

 Statement (iii) is correct.Let two circles touch externally (see Fig. 12.7).From the figure,AC=AB+BC=r1+r2=distance between centresStatement (iv) is incorrect." />

From the figure, AC=Rand BC=rAB=AC-BC=R-r  Statement (i) is correct.Distance moved by a rotating wheel in one revolution=2πR=circumference of circle (see Fig. 12.5) Statement (ii) is incorrect.From Fig. 12.6, area enclosed by two concentric circles of radius Rand r(R>r):=πR2-πr2=π(R2-r2)

 Statement (iii) is correct.Let two circles touch externally (see Fig. 12.7).From the figure,AC=AB+BC=r1+r2=distance between centresStatement (iv) is incorrect.

 



Q 12 :

The perimeter of the sector of a circle of radius 21 cm which subtends an angle of 60° at the centre, is:

  • 22 cm

     

  • 43 cm

     

  • 64 cm

     

  • 462 cm

     

(3)

Let OAB be the given sector as shown in the figure.

Length of the corresponding arc, 

AB=60°360°×2πr=16×2×227×21=22 cmAB=22 cmPerimeter of the sector=OA+AB+BO=21+22+21=64 cm

 



Q 13 :

What is the length of the arc of the sector of a circle with radius 14 cm and central angle 90°?

  • 22 cm

     

  • 44 cm

     

  • 88 cm

     

  • 11 cm

     

(1)

We have r=14 cm and θ=90°Length of the arc=θ360°×2πr=90°360°×2×227×14=14×4×22=22 cm

 



Q 14 :

Given a circle of radius ‘ r ’ with centre ‘O’. Chord AB  makes 90° angle at centre O .

(Radius,r=522cm)Analyse the following statements:

(i) Difference between areas of two segments ADB and ACB made by chord AB is 254π+2 cm2

(ii) Area of ΔAOB=252 cm2

(iii) Length of chord AB=5 cm

(iv) Length of arc ACB=32π4 cm

Which of the above statements are correct? Choose the correct option from the following:

  • (ii) and (iii)

     

  • (i) and (iv)

     

  • (iii) and (iv)

     

  • (i) and (iii)

     

(4)

ΔAOB is right-angled at OLength of chord AB:AB=AO2+BO2=r2+r2=2r=2×52=5 cm (iii) is correct.Area o fΔAOB:Area=12×AO×BO=12r2=12522=254 cm2Thus(ii) is incorrect(because statement(ii)says252,not254).Length of arc ACB:Arc length=θ360°×circumference=90°360°×2πr=14×2π×52=52π4 cmBut statement(iv) says32π4,so(iv) is incorrect.Finding areas of segmentsLet A1=area of minor segment ACBLet A2=area of major segment ADBArea of a segment: θ360°πr2-12r2Forθ=90°: A1=π360×90-12r2=π4-12522A1=25π8-254cm2Area of entire circle:πr2=π×522=25π2A2=25π2-A1A2=25π2-25π8-254=75π8+254Required difference:A2-A1=75π8+254-25π8-254=254π+2 cm2 (i) is correct

 



Q 15 :

In the given figure, arcs have been drawn with radii 14 cm each and with centres P, Q and R. Then:

(i) We need ∠P, ∠Q and ∠R to find combined area of shaded region
(ii) Area of shaded region 308 cm²

(iii) Angles are needed to find area of respective sector.
(iv) Arc length at P, Q, R = radius × respective angles in radian

Which of the above statements are correct. Choose the correct option from the following

  • (i), (ii) and (iv)

     

  • (ii), (iii) and (iv)
     

  • (ii) and (iv)
     

  • (i), (ii) and (iv)

     

(2)

Area of sector =θ360×area of circleArea of sector at P = P360×πr2Area of sector at Q = Q360×πr2Area of sector at R =R360×πr2Total area of shaded region =P+Q+R360×πr2We know (Sum of interior angles of triangle) Area of shaded region=180360πr2=12πr2=12×227×14×14=308 cm2 (ii) is correct.Hence, we dont need angles to find area of shaded region, so (i) is incorrect.Arc length = Radius × Angle in radians  (iv) is correct.But we need angles to find respective arc length and areas of respective sectors.  (iii) is correctHence (ii), (iii) and (iv) are correct.

 



Q 16 :

In the figure, the area of the shaded region is:

  • 3π cm2

     

  • 6π cm2

     

  • 9π cm2

     

  • 7π cm2

     

(1)

SinceABCD,BAD+ADC=180°(Co-interior angles)BAD+60°=180°BAD=120°θ=120° and r=3 cmArea of shaded region=θ360°×πr2=120°360°×π×(3)2=13×9π=3π cm2

 



Q 17 :

There is a square board of side 2a units circumscribing a circle as shown in the figure. The area of shaded portion in sq. units is:

  • π/4-a2

     

  • (4-π)a2

     

  • (4-π)/4

     

  •  4/π

     

(2)

We have length of the square board = 2a

Diameter of circle = 2a

Radius of circle = a

Area of square=(2a)2=4a2

And,area of circle inscribed=πa2

Area of shaded region = Area of square − Area of circle

=4a2-πa2=(4-π)a2

 



Q 18 :

In context to the given figure, analyse the following statements:

(i) The area of shaded region GEFCD is 546 cm².

(ii) The area of region (AEG + EBF) is 77 cm².

(iii) The area of shaded region GEFCD is 469 cm².

(iv) The area of shaded region (AEG + EBF) is 308 cm².

Which of the above statements are correct? Choose the correct option from the following:

  • (i) and (ii)

     

  • (iii) and (iv)

     

  • (i) and (iii)

     

  • (ii) and (iv)

     

(1)

AGE and FEB are quarter circles with radius 142=7 cm

Therefore, Area of quarter circles AGE + Area of quarter circle FEB

=π(7)24+π(7)24=π(7)22=227×(7)22=77 cm2 (ii) is correctArea of upper semi-circle (diameter DC)=12×π(DC)24=227×14×144×12=77 cm2Area of blue shaded region=Area of rectangle ABCD-Area of region (AEG + FEB)-Area of semicircle with diameter DC=(50×14)-77-77=546 cm2(i) is correct



Q 19 :

Given alongside is a geometrical shape.
C is centre of semicircle with radius BC=21 cm.
ABC is isosceles triangle. (Use π=3.14)

Which of the following statements are correct?

(i) Area of triangle ABC outside circular region = 47.4075 cm²

(ii) Area of sector CBD = 276 cm²

(iii) Angle of sector CBD = 45°

(iv) AreaofABC=220.5cm²

Choose the correct option from the following

  • (i), (iii) and (iv)

     

  • (i) and (ii)
     

  • (i) and (iii)

     

  • (iii) and (iv)

     

(1)

SinceABC is isoscelesAB=BC=21 cmArea of ABC:=12×AB×BC=12×(21)2=220.5 cm2Statement (iv) is correct.ABC is isosceles withB=90°So, the other angles each measure 45°.Angle of sector CBD=45°Statement (iii) is correct.Area of sector CBD=θ360°×πr2=45360×3.14×21×21=173.0925 cm2Statement (ii) is incorrect.Area of triangle outside circular region=Area of ABC-Area of sector CBD=220.5-173.0925=47.4075 cm2Statement (i) is correct.

 



Q 20 :

In the given figure, the centre of all three circles of equal radius = 10 cm lie in a straight line. These circles are inscribed in a rectangle which is inscribed in another circle.

(i) The area of largest circle is 1000 π cm2.

(ii) The area of largest circle is 900π cm2.

(iii) Area of rectangle is 1200 cm2.

(iv) Perimeter of rectangle is 80 cm.

Which of the above statements are correct?

  • (i) and (iv)

     

  • (ii) and (iv)

     

  • (ii) and (iii)

     

  • (i) and (iii)

     

(4)

Length of rectangle (AC), sum of diameter of all inner circles 

=3×20=60 cmWidth of rectangle BC,b=diameter of smaller circle=20 cmRadius of bigger circle (OB),Diagonal of RectangleR=AC2+BC22=(60)2+(20)22=40002=10001Area of rectangle =l×b=60×20=1200 cm2 Statement (iii) is correct.=2(l+b)=2(60+20)=160 cm Statement (iv) is incorrect.Area of bigger circle =πR2=π×(1000)2=1000π cm2 Statement (i) is correct.Option (d) is correct.