Q 1 :    

A particle of mass 5m at rest suddenly breaks on its own into three fragments. Two fragments of mass m each move along mutually perpendicular directions with speed v each. The energy released during the process is:          [2019]

  • 35mv2

     

  • 53mv2

     

  • 32mv2

     

  • 43mv2

     

(4)

Let the speed of the third fragment of mass 3m be v'.

[IMAGE 44]

From the law of conservation of linear momentum,

3mv'=2mvv'=2v3                       ...(i)

   Energy released during the process is,

K.E.=2(12mv2)+12(3m)v'2=mv2+12(3m)2v29  (Using eqn. (i))

=mv2+mv23=43mv2



Q 2 :    

A body of mass (4m) is lying in the x-y plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass (m), move perpendicular to each other with equal speeds (v). The total kinetic energy generated due to explosion is             [2014]
 

  • mv2

     

  • 32mv2

     

  • 2mv2

     

  • 4mv2

     

(2)

[IMAGE 45]

Let v' be the velocity of third piece of mass 2m.

Initial momentum, pi=0  (As the body is at rest)

Final momentum, pf=mvi^+mvj^+2mv'

According to law of conservation of momentum

         pi=pf or, 0=mvi^+mvj^+2mv' or, v'=-v2i^-v2j^

The magnitude of v' is

             v'=(-v2)2+(-v2)2=v2

Total kinetic energy generated due to explosion

=12mv2+12mv2+12(2m)v'2

=12mv2+12mv2+12(2m)(v2)2  =mv2+mv22=32mv2