Q 1 :    

At any instant of time t, the displacement of any particle is given by 2t-1 (SI unit) under the influence of force of 5 N. The value of instantaneous power is (in SI unit)  [2024]
 

  • 10

     

  • 5

     

  • 7

     

  • 6

     

(1)

Displacement of particle, S=(2t-1) SI unit

Force, F=5N

Instantaneous power is given by, P=dWdt

where, W is the work done on the particle.

P=ddt(F·S)=F·dSdt=5×ddt(2t-1)=5×2

=10 SI Unit



Q 2 :    

A particle moves with a velocity (5i^-3j^+6k^)ms-1 horizontally under the action of a constant force (10i^+10j^+20k^)N. The instantaneous power supplied to the particle is            [2023]

  • 200 W

     

  • Zero

     

  • 100 W

     

  • 140 W

     

(4)

Power is scalar product of torque times velocity.

P=F·v ; P=(10i^+10j^+20k^)·(5i^-3j^+6k^)

P=50-30+120,  P=140W



Q 3 :    

An electric lift with a maximum load of 2000 kg (lift + passengers) is moving up with a constant speed of 1.5ms-1. The frictional force opposing the motion is 3000 N. The minimum power delivered by the motor to the lift in watts is (g=10ms-2)           [2022]

  • 23000

     

  • 20000

     

  • 34500

     

  • 23500

     

(3)

Given that,

Mass of lift + passengers, m=2000kg

Speed, v=1.5m/s

Frictional force, f=3000N

Power delivered, P=Force×velocity                ...(i)

Force acting

F=mg+f

F=2000×10+3000

F=23000N

Using value of 'F' in equation (i),

P=23000×1.5=34500W

 



Q 4 :    

Water falls from a height of 60 m at the rate of 15 kg/s to operate a turbine. The losses due to frictional force are 10% of the input energy. How much power is generated by the turbine?              [2021, 2008]
 

  • 7.0 kW

     

  • 10.2 kW

     

  • 8.1 kW

     

  • 12.3 kW

     

(3)

Given, h=60 m

Now, water falls at the rate of 15 kg is

i.e., mt=15kg/s

g=10m/s2

As loss due to friction is 10%, therefore only 90% of input energy is used to generate power.

   P=ghmt×90100

P=10×60×15×90100=8100WP=8.1kW



Q 5 :    

A body of mass 1 kg begins to move under the action of a time dependent force F=(2ti^+3t2j^)N, where i^ and j^ are unit vectors along x and y axis. What power will be developed by the force at the time t ?               [2016]

  • (2t3+3t4)W

     

  • (2t3+3t5)W

     

  • (2t2+3t3)W

     

  • (2t2+4t4)W

     

(2)

Here, F=(2ti^+3t2j^)N,  m=1kg

Acceleration of the body, a=Fm=(2ti^+3t2j^)N1kg

Velocity of the body at time t,

         v=adt=(2ti^+3t2j^)dt=t2i^+t3j^ ms-1

 Power developed by the force at time t,

      P=F·v=(2ti^+3t2j^)·(t2i^+t3j^)W=(2t3+3t5)W

 



Q 6 :    

The heart of a man pumps 5 litres of blood through the arteries per minute at a pressure of 150 mm of mercury. If the density of mercury be 13.6×103kg/m3 and g=10m/s2, then the power (in watt) is           [2015]

  • 3.0

     

  • 1.50

     

  • 1.70

     

  • 2.35

     

(3)

Here, Volume of blood pumped by man's heart,

V=5litres=5×10-3m3  (1litre=10-3m3)

Time in which this volume of blood pumps,

            t=1min=60s

Pressure at which the blood pumps,

P=150mm of Hg=0.15m of Hg

=(0.15m)(13.6×103kg/m3)(10m/s2)

=20.4×103N/m2

 Power of the heart =PVt

        =(20.4×103N/m2)(5×10-3m3)60s=1.70W



Q 7 :    

A particle of mass m is driven by a machine that delivers a constant power k watts. If the particle starts from rest, the force on the particle at time t is        [2015]
 

  • 2mkt-1/2

     

  • 12mkt-1/2

     

  • mk2t-1/2

     

  • mkt-1/2

     

(3)

Constant power acting on the particle of mass m is k watt.

or     P=k;dWdt=k; dW=kdt

Integrating both sides, 0WdW=0tkdt

W=kt                                                      ...(i)

Using work-energy theorem,


W=12mv2-12m(0)2kt=12mv2  [Using (i)]

v=2ktm

Acceleration of the particle, a=dvdt

a=122km1t=k2mt

Force on the particle, F=ma=mk2t=mk2t-1/2