Q 1 :    

For three vectors A=(-xi^-6j^-2k^), B=(-i^+4j^+3k^) and C=(-8i^-j^+3k^), if A·(B×C)=0 then value of x is _______ .             [2024]



(4)       B=-i^+4j^+3k^ and C=-8i^-j^+3k^

           B×C=|i^j^k^-143-8-13|=15i^-21j^+33k^

           A·(B×C)=(-xi^-6j^-2k^)·(15i^-21j^+33k^)

           0=-15x+126-66

           15x=60x=4

 



Q 2 :    

Two particles are located at equal distance from origin. The position vectors of those are represented by A=2i^+3nj^+2k^ and B=2i^2j^+4pk^, respectively. If both the vectors are at right angle to each other, the value of n1 is __________.          [2025]



(3)

A·B=0 and |A|=|B|

 4 – 6n + 8p = 0

3n – 4p = 2          ... (i)

Also 4+9n2+4=4+4+16p2

3n=±4p          ... (ii)

±4p4p=2

Taking –ve sign

–8p = 2

p=14, 3n+1=2  n=13