Q 31 :

Let the range of the function f(x)=6+16 cos x·cos(π3x)·cos(π3+x)·sin 3x·cos 6x, xR be [α, β]. Then the distance of the point (α, β) from the line 3x + 4y + 12 = 0 is:          [2025]

  • 8

     

  • 11

     

  • 9

     

  • 10

     

(2)

f(x)=6+16(14cos 3x) sin 3x·cos 6x

                                           [ cos θ cos(π3θ)cos(π3+θ)=14cos 3θ]

                =6+4 cos 3x sin 3x cos 6x=6+sin 12x

  Range of sin x = [–1, 1]

  Range of f(x) is [5, 7]

 (α,β)(5,7)

   Distance of point (5, 7) from the line 3x + 4y + 12 = 0

                =|15+28+125|=11



Q 32 :

Let the lines 3x – 4y – α= 0, 8x –11y – 33 = 0 and 2x – 3yλ = 0 be concurrent. If the image of the point (1, 2) in the line 2x – 3yλ = 0 is (5713,4013), then |αλ| is equal to          [2025]

  • 101

     

  • 113

     

  • 84

     

  • 91

     

(4)

As the three lines are concurrent,

      |34α8113323λ|=0

 3(11λ99)+4(8λ+66)α(24+22)=0

 33λ297+32λ+264+2α=0

 λ33+2α=0                                                    ...(i)

As image, (1, 2) w.r.t. 2x – 3yλ = 0 is (5713,4013)

       571312=401323=2(26+λ4+9)

 2213=2(4+λ)13  λ=7

Substitute λ = –7 in (i), we get

733+2α=0  a=13

  |αλ|=|13×(7)|=91



Q 33 :

Two equal sides of an isosceles triangle are along – x + 2y = 4 and x + y = 4. If m is the slope of its third side, then the sum, of all possible distinct values of m, is:          [2025]

  • 210

     

  • 12

     

  • –6

     

  • 6

     

(4)

Slope of given lines are m1=12 and m2=1.

Since, AB = AC, then ABC = ACB

Now, angle between AB and BC = angle between AC and BC

m121+12(m)=1m1m

 2m12+m=m+1m1

 2m23m+1=m2+3m+2

 m26m1=0

Sum of roots = 6

   Required sum is 6.



Q 34 :

Let the distance between two parallel lines be 5 units and a point P lie between the lines at a unit distance from one of them. An equilateral triangle PQR is formed such that Q lies on one of the parallel lines, while R lies on the other. Then (QR)2 is equal to _________.          [2025]



(28)

Let PRN=θ

 PR=cosec θ and PQ=4 sec(30°+θ)

For equilateral PQR.

Let PR = PQ

 cosec θ=4 sec(θ+30°)

 cos (θ+30°)=4 sin θ

 32cos θ12sin θ=4 sin θ

 tan θ=133

 cosecθ=28

Now, QR2=d2=cosec2θ=28.



Q 35 :

If α=1+r=16(3)r1 C2r112, then the distance of the point (12,3) from the line αx3y+1=0 is _________.         [2025]



(5)

Given, α=1+r=16(3)r1 C2r112

                    =1+r=16C2r112(3i)2r13i

Let t=3i, then we have

α=1+13i[C112t+C312t3+...+C1112t11]

        =1+13i[(1+3i)12(13i)122]

       =1+13i[(2ω2)12(2ω)122]=1         [ ω3=0]

   Distance of (12,3) from x3y+1=0 is

          |123(3)+1(1)2+(3)2|=123+11+3=5.



Q 36 :

The straight lines l1 and l2 pass through the origin and trisect the line segment of the line L: 9x+5y=45 between the axes. If m1 and m2 are the slopes of the lines l1 and l2, then the point of intersection of the line y=(m1+m2)x with L lies on           [2023]
 

  • y-x=5

     

  • 6x+y=10

     

  • y-2x=5

     

  • 6x-y=15

     

(1)

Let l1:y=m1x and l2:y=m2x be the two lines which trisects L.

Now, 9x+5y=45  x5+y9=1                 ...(i)

Now, L intersects coordinate axes at A(5,0) and B(0,9).

Since l1 divides AB in the ratio 2:1

  M(53,6)

Also, l2 divides AB in the ratio 1:2.

  N(103,3)

So, l1:6=m1×53m1=185
and l2:3=m2×103m2=910

So, equation of line y=(m1+m2)x becomes

y=(185+910)xy=92x              ...(ii)

Now point of intersection of (i) and (ii) is,

x5+x2=1  7x10=1  x=107 So, y=457

i.e., (107,457) is the point of intersection of (i) & (ii), which satisfies option (1).



Q 37 :

Let (α,β) be the centroid of the triangle formed by the lines 15x-y=82,6x-5y=-4 and 9x+4y=17. Then α+2β and 2α-β are the roots of the equation   [2023]

  • x2-7x+12=0

     

  • x2-10x+25=0

     

  • x2-14x+48=0

     

  • x2-13x+42=0

     

(4)

Given lines are

15x-y=82  (i)

6x-5y=-4  (ii)

9x+4y=17  (iii)

After solving the equations, we get the co-ordinates as (6,8),(1,2) and (5,-7)

So, centroid, (α,β)=(6+1+53,8+2-73)=(4,1)

  α+2β=4+2=6;  2α-β=7

So, required equation is x2-13x+42=0



Q 38 :

If (α,β) is the orthocenter of the triangle ABC with vertices A(3,-7), B(-1,2) and C(4,5), then 9α-6β+60 is equal to          [2023]

  • 30

     

  • 35

     

  • 25

     

  • 40

     

(3)

Draw altitudes BM, CN and AP, then their intersection point is the orthocentre.  

Now, let us find the equation of line BM, CN and AP.

Slope of AC=121

So, slope of BM=-112

Equation of BM: (y-2)=-112(x+1)

12y-24=-x-112y+x=23                ...(i)

Now, slope of AB=9-4

So, slope of CN=49

Equation of CN: (y-5)=49(x-4)9y-45=4x-16

 4x-9y-16+45=04x-9y+29=0  ...(ii)

Similarly, equation of AP: 5x+3y=-6  ...(iii)

Now, solving (i) and (ii), we get y=12157, x=-14157

Also, (-14157, 12157) satisfies (iii)

So, orthocentre, (α,β)=(-14157, 12157)

and 9α-6β+60=9×(-14157)-6×12157+60

=-42319-24219+114019=47519=25



Q 39 :

The combined equation of the two lines ax+by+c=0 and a'x+b'y+c'=0 can be written as (ax+by+c)(a'x+b'y+c')=0. The equation of the angle bisectors of the lines represented by the equation 2x2+xy-3y2=0 is               [2023]

  • 3x2+5xy+2y2=0

     

  • x2-y2-10xy=0

     

  • 3x2+xy-2y2=0

     

  • x2-y2+10xy=0

     

(2)

Given equation of lines is 2x2+xy-3y2=0 

Equation of angle bisector of lines ax2+2hxy+by2=0 is 

x2-y2xy=a-bh

Here, a=2, b=-3 and h=12

    Equation of angle bisector of given lines is

x2-y2xy=2+312=10

 x2-y2=10xy i.e., x2-y2-10xy=0



Q 40 :

A light ray emits from the origin making an angle 30° with the positive x-axis. After getting reflected by the line x+y=1, if this ray intersects the x-axis at Q, then the abscissa of Q is             [2023]

  • 2(3-1)

     

  • 32(3+1)

     

  • 23+3

     

  • 23-3

     

(3)

Given Slope of incident ray =tan30°=13

So, slope of incident ray = slope of reflected ray =13

Now, Equation of line making an angle 30° with positive x-axis and passing through origin is, y=x3

So, line y=x3 and x+y=1 intersect at (33+1,13+1)

So, equation of reflected ray is

y-13+1=3(x-33+1)

Put y=0 x=23+3