Q 21 :    

Let the equation x(x + 2)(12 – k) = 2 have equal roots. Then the distance of the point (k,k2) from the line 3x + 4y + 5 = 0 is          [2025]

  • 53

     

  • 155

     

  • 12

     

  • 15

     

(4)

We have, (x2+2x)(12k)=2

 λx2+2λx2=0, k12          [Let 12 – k = λ]

For equal roots, D = 0

 4λ2+8λ=0

 4λ(λ+2)=0

 λ=0     (which is not possible)

or   λ=2  12k=2

 k=14

So, P(k,k2)=(14,7)

  Distance, d=|3×14+4×7+59+16|=15.



Q 22 :    

Consider the lines x(3λ+1)+y(7λ+2)=17λ+5λ being a parameter, all passing through a point P. One of these lines (say L) is farthest from the origin. If the distance of L from the point (3, 6) is d, then the value of d2 is         [2025]

  • 15

     

  • 10

     

  • 30

     

  • 20

     

(4)

We have, x(3λ+1)+y(7λ+2)=17λ+5

 (x+2y5)+λ(3x+7y17)=0

The intersection of family of lines is the point P(1, 2) and let Q(3,6).

Now, d=PQ=22+42=20  d2=20



Q 23 :    

For an integer n2, if the arithmetic mean of all coefficient in the binomial expansion of (x+y)2n3 is 16, then the distance of the point P(2n1,n24n) from the line x + y = 8 is          [2025]

  • 2

     

  • 22

     

  • 32

     

  • 52

     

(3)

Number of terms in (x+y)2n3=2n3+1=2n2

If x = 1, y = 1

Then, sum of all coefficients = 22n3

So, arithmetic mean of all coefficients = 22n3(2n3)+1

 22n32n2=16  22n=256(n1)  n = 5

Now, P(2n1,n24n)=(9,5)

So, distance from P(9, 5) to the line x + y = 8 is

(9+58)1+1=62=32 units.



Q 24 :    

Let ABC be the triangle such that the equation of lines AB and AC be 3yx = 2 and x + y = 2, respectively, and the points B and C lie on x-axis. If P is the orthocentre of the triangle ABC, then the area of the triangle PBC is equal to          [2025]

  • 10

     

  • 4

     

  • 8

     

  • 6

     

(4)

Equation of Altitude AP, which is perpendicular to BC is given by

x = 1          ... (i)

Equation of Altitude BP, which is perpendicular to AC is given by

y – 0 = 1(x + 2)  xy + 2 = 0          ... (ii)

Hence, P(1, 3)          [From (i) and (ii)]

  Area of PBC=12×4×3=6 sq. units



Q 25 :    

If for θ[π3,0], the points (x,y)=(3tan(θ+π3), 2tan(θ+π6)) lie on xy+αx+βy+γ=0, then α2+β2+γ2 is equal to          [2025]

  • 72

     

  • 75

     

  • 80

     

  • 96

     

(2)

We have, x=3 tan(θ+π3)

 x=3(tan θ+313 tan θ)

 xx3 tan θ=3 tan θ+33

 tan θ=x333+3x          ... (i)

Also, y=2 tan(θ+π6)

 y=2(tan θ+13)(1tan θ3)

 y(3tan θ)=2(3 tan θ+1)          ... (ii)

Solving (i) and (ii), we get

 2(x333+x+1)=y(3(x33)3(3+x))

 23(x33+x+3)=y(3(3+x)x+33)

 43x12=y(2x+63)

 xy23x+33y+6=0

Comparing with xy+αx+βy+γ, we get

α=23, β=33, γ=6

  α2+β2+γ2=12+27+36=75.



Q 26 :    

If the orthocenter of the triangle formed by the lines y = x + 1, y = 4x – 8 and y = mx + c is at (3, –1), then mc is:          [2025]

  • –2

     

  • 0

     

  • 4

     

  • 2

     

(2)

Using lines PQ and QR, we get

Point Q(1cm1,1cm1+1)

mQH=1cm1+21cm13=1c+2m21c3m+3=14    [ QHPR]          ... (i)

  mPH=50  Slope of line QR (m)=0

Put value of m in equation (i), we get

         1c21c+3=14  c=0

 mc=0.



Q 27 :    

A line passing through the point P(a, 0) makes an acute angle α with the positive x-axis. Let this line be rotated about the point P through an angle α2 in the clock-wise direction. If in the new position, the slope of the line is 23 and its distance from the origin is 12, then the value of 3a2 tan2 α23 is:          [2025]

  • 8

     

  • 6

     

  • 5

     

  • 4

     

(4)

Slope of new line =23

The new angle with x-axis is αα2=α2

  tan(α2)=23=tan(π12)  α2=π12  α=π6

The new line passes through (a, 0) and has slope 23.

So equation of new line is

(y0)=(23)(xa)  y(23)x=(23)a

Now, distance of this line from origin is 12

 |0+(23)a(23)2+12|=12  (23)|a|843=12

On squaring both sides, we get (23)2a2843=12

 2(743)a2=843

 (743)a2=423

 a2=423743×7+437+43

           =28+163143244948

       a2=4+23

Now, 3a2 tan2 α23=3(4+23) tan2π623

                                                 =(12+63)·1323

                                                 =4+2323=4.



Q 28 :    

Let a be the length of a side of a square OABC with O being the origin. Its side OA makes an acute angle α with the positive x-axis and the equations of its diagonals are (3+1)x+(31)y=0 and (31)x(3+1)y+83=0. Then a2 is equal to:          [2025]

  • 48

     

  • 32

     

  • 24

     

  • 16

     

(1)

Slope of OB = 3+113=tan 105°

Now, α+45°=105°  α=60°

   Coordinates of A are (a cos 60°, a sin 60°)

i.e.(a2,3a2)

Now, A lies on diagonal AC.

 (31)a2(3+1)3a2+83=0

 a2[3133]+83=0

 a2[4]+83=0

 a=43

 a2=48.



Q 29 :    

Let the triangle PQR be the image of the triangle with vertices (1, 3), (3, 1) and (2, 4) in the line x + 2y = 2. If the centroid of PQR is the point (α, β), then 15(αβ) is equal to:          [2025]

  • 19

     

  • 24

     

  • 21

     

  • 22

     

(4)

Let P, Q and R be the mirror images of points (1, 3), (3, 1) and (2, 4) in the line x + 2y – 2 = 0.

Coordinates of P is given by

x11=y32=2(1+625) i.e., P(1,1)

Similarly, Q(95,75) and R(65,125)

Centroid of PQR=(215,85)

  α=215 and β=85

Thus, 15(αβ)=15(215+85)=22.



Q 30 :    

A rod of length eight units moves such that its ends A and B always lie on the lines xy + 2 = 0 and y + 2 = 0, respectively. If the locus of the point P, that divides the rod AB internally in the ratio 2 : 1 is 9(x2+αy2+βxy+γx+28y)76=0, then αβγ is equal to:          [2025]

  • 22

     

  • 21

     

  • 24

     

  • 23

     

(4)

Let P(h, k) be the point which divides AB internally in the ratio 2 : 1.

  h=2β+α3 and k=4+α+23

 α=3k+2

  2β=3hα=3h3k2

So, AB = 8

 (αβ)2+(α+4)2=64

 (3k+2(3h3k22))2+(3k+2+4)2=64

 (9k3h+6)24+(3k+6)2=64

 9[(3kh+2)2+4(k+2)2]=64×4

 9(9k2+h2+46kh+12k4h+4k2+16+16k)=256

 9(13k2+h26kh+28k4h)=76

 9(x2+13y26xy4x+28y)=76

Comparing the equation with

[9(x2+αy2+βxy+γx+28y)76]=0

 α=13, β=6, γ=4

  αβγ=13+6+4=23