Q 21 :    

Let C1 be the circle in the third quadrant of radius 3, that touches both coordinate axes. Let C2 be the circle with centre (1, 3) that touches C1 externally at the point (α,β). If (βα)2=mn, gcd (m, n) = 1, then m + n is equal to          [2025]

  • 31

     

  • 13

     

  • 9

     

  • 22

     

(4)

The equation of circle C1, (x+3)2+(y+3)2=32

The centres has C1 and C2 are A(–3, –3) and B(1, 3)

AB=16+36=213

So, the radius are r1=3 and r2=2133

The point P(α,β)

α=r1(1)+r2(3)r1+r2, β=r1(3)+r2(3)r1+r2

α=33(2133)213, β=3(3)+(233)(3)213

 α=126323, β=186323

Now, (βα)2=(6213)2=3652=913          (Given, (βα)2=mn)

So, m = 9, n = 13.

So, m + n = 22.



Q 22 :    

A circle C of radius 2 lies in the second quadrant and touches both the coordinate axes. Let r be the radius of a circle that has centre at the point (2, 5) and intersects the circle C at exactly two points. If the set of all possible values of r is the interval (α,β), then 3β2α is equal to:          [2025]

  • 12

     

  • 14

     

  • 10

     

  • 15

     

(4)

Circle with radius r touches the circle C, when r + 2 = distance between their centres

i.e.r+2=42+32=5

Also, if circle C touches the circle with radius r internally, then

r=2+42+32=2+5=7

Since, circle with radius r intersects the circle C at exactly 2 points.

  r+2>5 and r<7 i.e., 3<r<7

  α=3, β=7

 3β2α=(3)(7)(2)(3)=216=15.



Q 23 :    

Let circle C be the image of x2+y22x+4y4=0 in the line 2x – 3y + 5 = 0 and A be the point on C such that OA is parallel to x-axis and A lies on the right hand side of the centre O of C. If B(α,β), with β<4, lies on C such that the length of the arc AB is (1/6)th of the perimeter of C, then β3α is equal to          [2025]

  • 3+3

     

  • 43

     

  • 4

     

  • 3

     

(3)

Centre of the circle x2+y22x+4y4=0 is (1, –2) and its radius 1+4+4=3

Image of (1, –2) about 2x – 3y + 5 = 0 is

x12=y+23=2(2+6+5)4+9=2

   x = – 3 and y = 4

Centre of circle C is (–3, 4).

Equation of Circle C is (x+3)2+(y4)2=9

l(arc AB)=16×2πr  rθ=16×2πr  θ=π3

As (α,β) lies on circle C,

 (α+3)2+(β4)2=9          ... (i)

 Coordinates of A are (0, 4)      ( A lies on right side of O and OA || x-axis)

Now, AB2=OA2+OB22OA·OB·cosπ3

                   =9+92×3×3×12=9

 α2+(β4)2=9          ... (ii)

From (i) and (ii), we get α=32

(β4)2=994  β=332+4       ( β<4)

Now, β3α=332+43(32)=4.



Q 24 :    

Let the equation of the circle, which touches x-axis at the point (a, 0), a > 0 and cuts off an intercept of length b on y-axis be x2+y2αx+βy+γ=0. If the circle lies below x-axis, then the ordered pair (2a,b2) is equal to          [2025]

  • (γ,β2+4α)

     

  • (γ,β24α)

     

  • (α,β2+4γ)

     

  • (α,β24γ)

     

(4)

Let, r be the radius of the circle,

r=α24+β24γ=β2

 α24γ=0

 α2=4γ; α2=a  α=2a

Now, length of intercept on y-axis = b=2β24γ

 β24γ=b24  b2=β24γ

   Points (2a,b2) = (α,β24γ)



Q 25 :    

Let the line x + y = 1 meet the circle x2+y2=4 at the points A and B. If the line perpendicular to AB and passing through the mid point of the chord AB intersects the circle at C and D, then the area of the quadrilateral ADBC is equal to:          [2025]

  • 37

     

  • 14

     

  • 214

     

  • 57

     

(3)

For points of intersection A and B.

Solving x + y = 1 and x2+y2=4, we get

A(172,1+72), B(1+72,172)

Slope of AB = –1

Slope of r bisector of AB = 1

For points of intersection C and D

Solving, x = y and x2+y2=4, we get

C(2,2) and D(2,2)

   Area of quadrilateral ADBC = 2 × Area of BCD

=2×12|2211+721721221|=214 sq. units.



Q 26 :    

Let a circle C pass through the points (4, 2) and (0, 2), and its centre lie on 3x + 2y + 2 = 0. Then the length of the chord, of the circle C, whose mid-point is (1, 2), is:           [2025]

  • 22

     

  • 23

     

  • 42

     

  • 3

     

(2)

Since, centre (h, k) lies on 3x + 2y + 2 = 0

 3h + 2k + 2 = 0          ... (i)

Also, the circle passes through the points (4, 2) and (0, 2), then we can say that (xh)2+(yk)2=r2 passes through (4, 2) and (0, 2)

  h2+(2k)2=r2          ... (ii)

and (4h)2+(2k)2=r2         ... (iii)

On subtracting (ii) from (iii), we get

h2=(4h)2  h2=16+h28h  h=2

From (i), k = – 4

   Centre = (2, –4)

Radius, r=(02)2+(2+4)2=40

Now, mid-point of the chord is (1, 2)

 Perpendicular distance from centre to chord = d

=(21)2+(42)2=37

  Length of chord = 2r2d2=24037=23



Q 27 :    

The absolute difference between the squares of the radii of the two circles passing through the point (–9, 4) and touching the lines x + y = 3 and xy = 3, is equal to __________.          [2025]



(768)

We have, x + y = 3 and xy = 3 are tangents

   The centre of both circles will lie on x-axis

Equation of circle is

  (xα)2+y2=r2

Hence, centre is C(α, 0).

r=PC=(α+9)2+16          ... (i)

Also, |α32|=r          ... (ii)

From (i) and (ii), we get

(α+9)2+16=|α32|

 α=5 or 37

r=|532|or |3732| = 42 or 202

   Now, |r12r22|=|(42)2(202)2|=768.



Q 28 :    

Let r be the radius of the circle, which touches x-axis at point (a, 0), a < 0 and the parabola y2=9x at the point (4, 6). Then r is equal to __________.          [2025]



(30)

Equation of circle is given by

         (xa)2+(yr)2=r2

Now, circle passes through the point A(4, 6). So, we have

         (4a)2+(6r)2=r2

16+a28a+36+r212r=r2

 a212r8a+52=0          ... (i)

Equation of tangent to the barabola y2=9x at the point A(4, 6) is given by yy1=2a(x+x1)

 6y=2×94(x+4)  6y=9x+362

 3x4y+12=0

Distance of this line from centre of circle is equal to radius of circle.

  |3a4r+129+16|=r

 3a4r+12=±5r

 3a+12=9r or 3a+12=-r

If 3a + 12 = 9r i.e., a + 4 = 3r, then by using equation (i), we get

a212(a+43)8a+52=0

 a24a168a+52=0  a212a+36=0

 (a6)2=0  a=6 but a<0  a6

Now, if 3a + 12 = – r, so by using equation (i), we get

         a28a+12(3a+12)+52=0

 a2+28a+196=0  (a+14)2=0

 a=14  r=30.