Q 1 :    

Each of the angles β and γ that a given line makes with the positive y-axes and z-axes, respectively, is half of the angle that this line makes with the positive x-axes. Then the sum of all possible values of the angle β is          [2025]

  • π

     

  • π2

     

  • 3π4

     

  • 3π2

     

(3)

Let the line makes angle α with positive x-axis, then β=α2 and γ=α2

Now, cos2α+cos2β+cos2γ=1

 cos2α+2cos2α2=1

 cos2α+cosα=0

 cosα(cosα+1)=0

  cosα=0,1 α=π2,π

Now, β=α2  β=π4,π2

So, required sum =π4+π2=3π4.



Q 2 :    

Let A(x, y, z) be a point in xy-plane, which is equidistant from three points (0, 3, 2), (2, 0, 3) and (0, 0, 1). Let B = (1, 4, –1) and C = (2, 0, –2). Then among the statements

(S1) : ABC is an isosceles right angled triangle, and

(S2) : the area of ABC is 922.

  • only (S1) is true

     

  • both are false

     

  • both are true

     

  • only (S2) is true

     

(1)

Given, A(x, y, z) be a point in xy-plane. Let the point P(0, 3, 2), Q(2, 0, 3) and R(0, 0, 1)

The distance of the point AP = AQ = AR

 (x0)2+(y3)2+(z2)2

     =(x2)2+(y0)2+(z3)2

     =(x0)2+(y0)2+(z1)2

In xy-plane, z = 0

So, x24x+y2+9+4=x2+y2+1  4x+13=1  x=3

And x2+y26y+9+4=x2+y2+1  y=2

So, A(3, 2, 0), B(1, 4, –1) and C(2, 0, –2).

In ABC

AB=1+4+4=3, BC=1+16+1=18, CA=1+4+4=3

So, AB = AC and AB2+AC2=(BC)2

   ABC is an isosceles right angled triangle.

So, (S1) is true.

Also, Area of ABC=12×(Base)(Height)=12×3×3=92

So, (S2) is false.