Q 1 :    

Each of the angles β and γ that a given line makes with the positive y-axes and z-axes, respectively, is half of the angle that this line makes with the positive x-axes. Then the sum of all possible values of the angle β is          [2025]

  • π

     

  • π2

     

  • 3π4

     

  • 3π2

     

(3)

Let the line makes angle α with positive x-axis, then β=α2 and γ=α2

Now, cos2α+cos2β+cos2γ=1

 cos2α+2cos2α2=1

 cos2α+cosα=0

 cosα(cosα+1)=0

  cosα=0,1 α=π2,π

Now, β=α2  β=π4,π2

So, required sum =π4+π2=3π4.



Q 2 :    

Let A(x, y, z) be a point in xy-plane, which is equidistant from three points (0, 3, 2), (2, 0, 3) and (0, 0, 1). Let B = (1, 4, –1) and C = (2, 0, –2). Then among the statements

(S1) : ABC is an isosceles right angled triangle, and

(S2) : the area of ABC is 922.

  • only (S1) is true

     

  • both are false

     

  • both are true

     

  • only (S2) is true

     

(1)

Given, A(x, y, z) be a point in xy-plane. Let the point P(0, 3, 2), Q(2, 0, 3) and R(0, 0, 1)

The distance of the point AP = AQ = AR

 (x0)2+(y3)2+(z2)2

     =(x2)2+(y0)2+(z3)2

     =(x0)2+(y0)2+(z1)2

In xy-plane, z = 0

So, x24x+y2+9+4=x2+y2+1  4x+13=1  x=3

And x2+y26y+9+4=x2+y2+1  y=2

So, A(3, 2, 0), B(1, 4, –1) and C(2, 0, –2).

In ABC

AB=1+4+4=3, BC=1+16+1=18, CA=1+4+4=3

So, AB = AC and AB2+AC2=(BC)2

   ABC is an isosceles right angled triangle.

So, (S1) is true.

Also, Area of ABC=12×(Base)(Height)=12×3×3=92

So, (S2) is false.



Q 3 :    

One vertex of a rectangular parallelepiped is at the origin O and the lengths of its edges along x,y and z axes are 3, 4 and 5 units respectively. Let P be the vertex (3, 4, 5). Then the shortest distance between the diagonal OP and an edge parallel to z-axis, not passing through O or P is         [2023]

  • 125

     

  • 1255

     

  • 125

     

  • 125

     

(1)

Equation of line OP,x-03-0=y-04-0=z-05-0
i.e., x3=y4=z5

Now, equation of edge parallel to z-axis passing through (3,0,5) and having direction ratios <0,0,1> is

x-30=y-00=z-51

Here, a1=(0,0,0),a2=(3,0,5);b1=(3,4,5),b2=(0,0,1)

So, a2-a1=3i^+5k^

b1×b2=|i^j^k^345001|=i^(4-0)-j^(3-0)+k^(0-0)=4i^-3j^

   Required shortest distance=|(3i^+5k^)·(4i^-3j^)|4i^-3j^||

=1216+9=125units.



Q 4 :    

The area of the quadrilateral ABCD with vertices A(2, 1, 1), B(1, 2, 5), C(−2, −3, 5) and D(1, −6, −7) is equal to      [2023]

  • 838

     

  • 48

     

  • 54

     

  • 938

     

(1)

The area of quadrilateral ABCD is equal to 12|AC×BD|.

Now, AC=(-2i^-3j^+5k^)-(2i^+j^+k^)=-4i^-4j^+4k^

and BD=(i^-6j^-7k^)-(i^+2j^+5k^)=-8j^-12k^

So, 12|AC×BD|=12||i^j^k^-4-440-8-12||

=12|80i^-48j^+32k^|=129728=838



Q 5 :    

The distance of the point P(4, 6, −2) from the line passing through the point (−3, 2, 3) and parallel to a line with direction ratios 3, 3, −1 is equal to:        [2023]

  • 23

     

  • 14

     

  • 3

     

  • 6

     

(2)

Let Q=-3i^+2j^+3k^

PQ=-7i^-4j^+5k^, b=3i^+3j^-k^|b|=19

PQ×b=|i^j^k^-7-4533-1|=-11i^+8j^-9k^

Required distance=|PQ×b|b||=112+82+9219=14units



Q 6 :    

Let the plane x+3y-2z+6=0 meet the coordinate axes at the points A, B, C. If the orthocenter of the triangle ABC is (α,β,67), then 98(α+β)2 is equal to _____ .   [2023]



(288)

Plane x+3y-2z+6=0 meets the coordinate axes at the points A, B, C.

For x-axis: x+0-0+6=0x=-6 i.e., (-6,0,0)

For y-axis: 0+3y-0+6=0y=-2 i.e., (0,-2,0)

For z-axis: 0+0-2z+6=0z=3 i.e., (0,0,3)

AB=6i^-2j^, BC=2j^+3k^, AC=6i^+3k^

Now, AP·BC=0

 (α+6,β,67)·(0,2,3)=0

2β+3·67=0β=-97

Similarly CP·AB=0

(α,β,-157)·(6,-2,0)=06α-2β=0

6α-2(-97)=06α=-187 α=-37

  98(α+β)2=98(-37-97)2=98(-127)2=98·14449=288