Q 1 :    

A particle executing simple harmonic motion with amplitude A has the same potential and kinetic energies at the displacement             [2024]
 

  • 2A

     

  • A2

     

  • A2

     

  • A2

     

(3)

Let the displacement of particle be x.

Given, Kinetic energy = Potential energy

12K(A2-x2)=12Kx2

or      A2-x2=x2

or     A2=2x2

x=A2



Q 2 :    

A body is executing simple harmonic motion with frequency n, the frequency of its potential energy is               [2021]

  • 4n

     

  • n

     

  • 2n

     

  • 3n

     

(3)

The equation for the S.H.M. is

y=Asinωt=Asin(2πnt)                                            ...(i)

where, A is amplitude, ω is angular frequency and y is displacement at time t.
The formula of potential energy is

U=12kA2sin2ωt

U=12kA2(1-cos2ωt2)=12kA2[1-cos2π(2n)t2]                         ...(ii)

                                                                                   (sin2θ=1-cos2θ2)  

From eqn. (i) and (ii), we get

Frequency of potential energy = 2n