Q 1 :    

The x-t graph of a particle performing simple harmonic motion is shown in the figure. The acceleration of the particle at t=2s is        [2023]

[IMAGE 119]
 

  • π216ms-2

     

  • -π216ms-2

     

  • π28ms-2

     

  • -π28ms-2

     

(2)

Here, ω=2π8=π4s-1

a=-Aω2=-(1)(π4)2=-π216ms-2

Thus, option (2) is correct.



Q 2 :    

The phase difference between displacement and acceleration of a particle in a simple harmonic motion is         [2020]
 

  • π rad

     

  • 3π/2 rad

     

  • π/2 rad

     

  • zero

     

(1)

Displacement of the particle, y=asinωt,

v=dydt=aω cos ωt

Acceleration,  a=dvdt=-aω2sin ωt

So, phase difference between displacement and acceleration is π.



Q 3 :    

Average velocity of a particle executing SHM in one complete vibration is             [2019]

  • zero

     

  • Aω2

     

  • Aω

     

  • Aω22

     

(1)

Since the displacement for a complete vibration is zero, therefore the average velocity will be zero.

 



Q 4 :    

A particle executes linear simple harmonic motion with an amplitude of 3 cm. When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is          [2017]
 

  • 52π

     

  • 4π5

     

  • 2π3

     

  • 5π

     

(2)

Given, A=3 cm, x=2 cm

The velocity of a particle in simple harmonic motion is given as v=ωA2-x2

and magnitude of its acceleration is a=ω2x

Given |v|=|a|    ωA2-x2=ω2x

ωx=A2-x2  or  ω2x2=A2-x2

ω2=A2-x2x2=9-44=54  or  ω=52

Time period, T=2πω=2π.25=4π5 s



Q 5 :    

A particle is executing a simple harmonic motion. Its maximum acceleration is α and maximum velocity is β. Then, its time period of vibration will be         [2015]
 

  • β2α

     

  • 2πβα

     

  • β2α2

     

  • αβ

     

(2)

If A and ω be the amplitude and angular frequency of vibration, then

          α=ω2A                                                           ...(i)

and    β=ωA                                                            ...(ii)

Dividing eqn. (i) by eqn. (ii), we get

         αβ=ω2AωA=ω

   Time period of vibration is T=2πω=2π(α/β)=2πβα



Q 6 :    

A particle is executing SHM along a straight line. Its velocities at distances x1 and x2 from the mean position are V1 and V2, respectively. Its time period is      [2015]
 

  • 2πV12+V22x12+x22

     

  • 2πV12-V22x12-x22

     

  • 2πx12+x22V12+V22

     

  • 2πx22-x12V12-V22

     

(4)

In SHM, velocities of a particle at distances x1 and x2 from mean position are given by

          V12=ω2(a2-x12)                        ...(i)

           V22=ω2(a2-x22)                       ...(ii)

From equations (i) and (ii), we get

         V12-V22=ω2(x22-x12)

ω=V12-V22x22-x12  T=2πx22-x12V12-V22



Q 7 :    

The oscillation of a body on a smooth horizontal surface is represented by the equation, X=Acos(ωt)

where X = displacement at time t

          ω = frequency of oscillation

Which one of the following graphs shows correctly the variation of a with t ? 

Here a = acceleration at time t, T = time period                                                                [2014]

  • [IMAGE 120]

     

  • [IMAGE 121]

     

  • [IMAGE 122]

     

  • [IMAGE 123]

     

(3)

Here, X=Acosωt

    Velocity, v=dXdt=ddt(Acosωt)=-Aωsinωt

Acceleration, a=dvdt=ddt(-Aωsinωt)=-Aω2cosωt

Hence the variation of a with t is correctly shown by graph (3).