Q 1 :    

If x=5sin(πt+π3) m represents the motion of a particle executing simple harmonic motion, the amplitude and time period of motion, respectively, are        [2024]
 

  • 5 cm, 2 s

     

  • 5 m, 2 s

     

  • 5 cm, 1 s

     

  • 5 m, 1 s

     

(2)

Given : x=5sin(πt+π3)m

Comparing the given equation with the standard equation of simple harmonic motion

x=Asin(ωt+ϕ)

we get, A = 5 m and ω=π

Time period, T=2πω=2ππ=2 s



Q 2 :    

A simple pendulum oscillating in air has a period of 3 s. If it is completely immersed in non-viscous liquid, having density (14)th of the material of the bob, the new period will be           [2023]
 

  • 23 s

     

  • 23 s

     

  • 2 s

     

  • 32 s

     

(3)

For simple pendulum, T=2πLgeff

According to the question, geff=g(1-ρlρ0)=g(1-14)=34g

So, T'T=2πL3g/42πLgT'=23

As, T=3 s   so   T'=23×3=2s



Q 3 :    

The displacement of a particle executing simple harmonic motion is given by, y=A0+Asinωt+Bcosωt. Then the amplitude of its oscillation is given by         [2019]

  • A+B

     

  • A0+A2+B2

     

  • A2+B2

     

  • A02+(A+B)2

     

(3)

y=A0+Asinωt+Bcosωt

or    (y-A0)=Asinωt+Bcosωt  or  y'=Asinωt+Bcosωt

         =Acos(π2-ωt)+Bcosωt

Amplitude =A2+B2+2ABcosπ2     [ϕ=π2]

                 =A2+B2



Q 4 :    

The distance covered by a particle undergoing SHM in one time period is (amplitude = A)            [2019]

  • zero

     

  • A

     

  • 2A

     

  • 4A

     

(4)