Q 1 :    

The displacement-time graphs of two moving particles make angles of 30° and 45° with the x-axis as shown in the figure. The ratio of their respective velocity is    [2022]

  • 3:1

     

  • 1:1

     

  • 1:2

     

  • 1:3

     

(4)

The slope of displacement time graph gives velocity

so, v1=tan30°;  v2=tan45°

so, v1v2=tan30°tan45°=13×1=1:3

 



Q 2 :    

Two cars P and Q start from a point at the same time in a straight line and their positions are represented by xP(t)=(at+bt2) and xQ(t)=(ft-t2). At what time do the cars have the same velocity?              [2016]

  • a-f1+b

     

  • a+f2(b-1)

     

  • a+f2(1+b)

     

  • f-a2(1+b)

     

(4)

Position of the car P at any time t, is

xP(t)=at+bt2;  vP(t)=dxP(t)dt=a+2bt                         ...(i)

Similarly, for car Q,

xQ(t)=ft-t2;  vQ(t)=dxQ(t)dt=f-2t                             ...(ii)

  vP(t)=vQ(t)  (Given)

  a+2bt=f-2t or, 2t(b+1)=f-a  

  t=f-a2(1+b)



Q 3 :    

If the velocity of a particle is v=At+Bt2, where A and B are constants, then the distance travelled by it between 1 s and 2 s is:        [2016]

  • 32A+73B

     

  • A2+B3

     

  • 32A+4B

     

  • 3A+7B

     

(1)

Velocity of the particle is v=At+Bt2

dsdt=At+Bt2; ds=(At+Bt2)dt    s=At22+Bt33+C

s(t=1s)=A2+B3+C;  s(t=2s)=2A+83B+C

Required distance=s(t=2s)-s(t=1s)

=(2A+83B+C)-(A2+B3+C)=32A+73B