Q 1 :    

In some appropriate units, time (t) and position (x) relation of a moving particle is given by t=x2+x. The acceleration of the particle is:           [2025]

  • +2(x+1)3

     

  • +22x+1

     

  • -2(x+2)3

     

  • -2(2x+1)3

     

(4)

Given, t=x2+x

Differentiating with respect to 't' on both sides,

dtdt=2xdxdt+dxdt

1=2xv+v                                  ...(i)

1=v(2x+1)

         v=12x+1                                 ...(ii)

Again, differentiating equation (i) with respect to 't',

0=2(dxdt.v+xdvdt)+dvdt

0=2(v2+x.a)+a

0=2v2+2xa+a

0=[2v2+a(2x+1)]

2v2=-a(2x+1)

Using equation (ii), we get

2(12x+1)2=-a(2x+1)

   a=-2(2x+1)3



Q 2 :    

A particle is moving along x-axis with its position (x) varying with time (t) as x=αt4+βt2+γt+δ. The ratio of its initial acceleration, respectively, is     [2024]

  • 2α:δ

     

  • γ:2δ

     

  • 4α:β

     

  • γ:2β

     

(4)

Given, position, (x)=αt4+βt2+γt+δ

Velocity, (v)=dxdt=4αt2+2βt+γ

Initial velocity, v (at t=0)=γ                                            ...(i)

Acceleration, (a)=dvdt=12αt2+2β

Initial acceleration, a (at t=0)=2β                                   ...(ii)

From equation (i) and (ii)

v(0)a(0)=γ2β=γ:2β

 



Q 3 :    

The velocity (v) – time (t) plot of the motion of a body is shown below.

The acceleration (a) – time (t) graph that best suits this motion is                        [2024]

  •  

  •  

  •  

  •  

(3)

Slope of velocity-time graph gives acceleration.

AB: Slope is positive and constant, so acceleration is positive and constant.
BC: Slope is zero, so acceleration is zero.
CD: Slope is negative and constant, so acceleration is negative and constant.

 



Q 4 :    

A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to v(x)=βx-2n, where β and n are constants and x is the position of the particle. The acceleration of the particle as a function of x, is given by                  [2015]

  • -2β2x-2n+1

     

  • -2nβ2e-4n+1

     

  • -2nβ2x-2n-1

     

  • -2nβ2x-4n-1

     

(4)

According to question, velocity of unit mass varies as

v(x)=βx-2n           ...(i),                 dvdx=-2nβx-2n-1              ...(ii)

Acceleration of the particle is given by

a=dvdt=dvdx×dxdt=dvdx×v

Using equation (i) and (ii), we get

a=(-2nβx-2n-1)×(βx-2n)=-2nβ2x-4n-1