Q 21 :

If the local maximum value of the function f(x)=(3e2sinx)sin2x, x(0,π2) is ke, then (ke)8+k8e5+k8 is equal to             [2023]

  • e3+e5+e11

     

  • e3+e6+e10

     

  • e5+e6+e11

     

  • e3+e6+e11

     

(4)

 



Q 22 :

max0xπ{x-2sinxcosx+13sin3x}=                 [2023]

  • π

     

  • π+2-336

     

  • 5π+2+336

     

  • 0

     

(3)

Let f(x)=x-2sinxcosx+13sin3x,  0xπ

f(x)=x-sin2x+13sin3x

f'(x)=1-2cos2x+cos3x=0

4cos3x-3cosx-2(2cos2x-1)+1=0

4cos3x-4cos2x-3cosx+3=0

4cos2x(cosx-1)-3(cosx-1)=0

(cosx-1)(4cos2x-3)=0

cosx=1,±32    x=0,π6,5π6

Now, f''(x)=4sin2x-3sin3x

Now, f''(0)=0

f''(π6)>0 and  f''(5π6)<0(5π6) is a point of maxima.

Hence, f(5π6)=5π6-2sin5π6cos5π6+13sin5π2

=5π6-sin2(5π6)+13=5π2+32+13=5π+33+26



Q 23 :

Let f(x)=2x+tan-1x and g(x)=loge(1+x2+x), x[0,3]. Then            [2023]  
 

  • minf'(x)=1+maxg'(x)

     

  • there exist 0<x1<x2<3 such that f(x)<g(x),x(x1,x2)

     

  • maxf(x)>maxg(x)

     

  • there exists x^[0,3] such that f'(x^)<g'(x^)

     

(3)

We have, f(x)=2x+tan-1x and g(x)=loge(1+x2+x)

g'(x)=11+x2+x[121+x2×2x+1]

=x+1+x2(1+x2+x)(1+x2)=11+x2; f'(x)=2+11+x2

Both f(x) and g(x) are strictly increasing functions in [0, 3].

Max f(x)=f(3)=6+tan-13

Max g(x)=g(3)=ln(10+3)

Max f(x)>Max g(x), x[0,3]



Q 24 :

Let

f(x)=|1+sin2xcos2xsin2xsin2x1+cos2xsin2xsin2xcos2x1+sin2x|x[π6,π3].

If α and β respectively are the maximum and the minimum values of f, then             [2023]
 

  • β2+2α=194

     

  • α2+β2=92

     

  • α2-β2=43

     

  • β2-2α=194

     

(4)

 



Q 25 :

The sum of the absolute maximum and minimum values of the function f(x)=|x2-5x+6|-3x+2 in the interval [-1,3] is equal to              [2023]

  • 12

     

  • 10

     

  • 24

     

  • 13

     

(2)

f(x)=|x2-5x+6|-3x+2

f(x)={x2-8x+8,x[-1,2]-x2+2x-4,x[2,3]

From the graph, Maximum value = 17 

Minimum value = - 7 as f(-1) = 17 and f(3)=-7

Sum of the absolute maximum and minimum values = 17-7=10



Q 26 :

Let x = 2 be a local minima of the function f(x)=2x4-18x2+8x+12, x(-4,4). If M is the local maximum value of the function f in (- 4, 4), then M=         [2023]

  • 186-332

     

  • 126-332

     

  • 126-312

     

  • 186-312

     

(2)

f(x)=2x4-18x2+8x+12 

f'(x)=8x3-36x+8=4(x-2)(2x2+4x-1)

Sign of f'(x) is given below

Point of maxima = 6-22 

M=126-332



Q 27 :

Let the function f(x)=2x3+(2p-7)x2+3(2p-9)x-6 have a maxima for some value of x < 0 and a minima for some value of x > 0. Then, the set of all values of p is    [2023]

  • (92,)

     

  • (0,92)

     

  • (-92,92)

     

  • (-,92)

     

(4)

We have, f(x)=2x3+(2p-7)x2+3(2p-9)x-6

Differentiating w.r.t. x, we get 

f'(x)=6x2+2(2p-7)x+3(2p-9) 

  f'(0)<03(2p-9)<0 

p<92

 So, p(-,92)



Q 28 :

If the functions f(x)=x33+2bx+ax22 and g(x)=x33+ax+bx2, a2b, have a common extreme point, then a+2b+7 is equal to       [2023]

  • 32

     

  • 3

     

  • 6

     

  • 4

     

(3)

We have, f(x)=x33+2bx+ax22

and g(x)=x33+ax+bx2,  a2b

For critical points,

       f'(x)=x2+2b+ax=0  ...(i)

       g'(x)=x2+2bx+a=0  ...(ii)

Since f(x) and g(x) have a common extreme point,  

condition for a common root is

α=a2c1-a1c2a1b2-a2b1=b1c2-b2c1a2c1-a1c2, α0 =2b-a2b-a=a2-4b22b-a

(a+2b)(a-2b)-(a-2b)=1 a+2b=-1

    a+2b+7=-1+7=6



Q 29 :

A wire of length 20 m is to be cut into two pieces. A piece of length l1 is bent to make a square of area A1 and the other piece of length l2 is made into a circle of area A2. If 2A1+3A2 is minimum, then (πl1):l2 is equal to:            [2023]
 

  • 6 : 1

     

  • 3 : 1

     

  • 4 : 1

     

  • 1 : 6

     

(1)

Let x be the side of the square and r=radius of the circle.  

Now, l1=4x and l2=2πr. Then 4x+2πr=l(let)  ...(i)

Also, A1=x2 and A2=πr2

Let A=2A1+3A2=2x2+3πr2

=2x2+3π(l-4x2π)2=2x2+34π(l-4x)2  [From (i)]

Now, dAdx=4x+32π(l-4x)(-4)

For minima, dAdx=0; 4x+32π(l-4x)×(-4)=0

x=6l4π+24

Now,  l1=4x=6lπ+6 and l2=2πr=l-4x

l2=l-6lπ+6=πlπ+6

Now,  
πl1l2=π(6lπ+6)(πlπ+6)=6:1



Q 30 :

The number of points, where the curve y=x5-20x3+50x+2 crosses the x-axis, is __________ .          [2023]



(5)

Let f(x)=y=x5-20x3+50x+2

dydx=5x4-60x2+50=5(x4-12x2+10)

Put dydx=0x4-12x2+10=0

x2=12±144-402x2=6±26x26±5.1

x211.1, 0.9x±3.3, ±0.95

f(0)=2, f(1)=+ve, f(2)=-ve; f(-1)=-ve, f(-2)=+ve

  y crosses the x-axis at 5 points.