Q 1 :    

For the function f(x)=sinx+3x-2π(x2+x), where x[0,π2], consider the following two statements :                

(I) f is increasing in (0,π2).

 

(II) f' is decreasing in (0,π2).

 

Between the above two statements,                 [2024]

  • neither (I) nor (II) is true.

     

  • only (II) is true.

     

  • both (I) and (II) are true.

     

  • only (I) is true.

     

(3)

f(x)=sinx+3x-2π(x2+x)

f'(x)=cosx+3-2π(2x+1)

f'(x)>0 for x[0,π4]

For x[π/4,π/2], we have π/4x<π/2

π2+12x+1<π+1

1+2π2π(2x+1)<2+2π

Since, 2π(2x+1)<3

So, f'(x)>0,x(0,π/2)

So f(x) is increasing in (0,π/2)

Now, f''(x)=-sinx-4π<0,x(0,π/2)

f'(x) is decreasing in (0,π/2).

Hence, both statements are true.



Q 2 :    

The interval in which the function f(x)=xx, x>0, is strictly increasing is             [2024]

  • [1e,)

     

  • [1e2,1)

     

  • (0,1e]

     

  • (0,)

     

(1)

f(x)=xx,x>0

So, y=xx

ln y=x ln x

1ydydx=1+ln x  dydx=xx(1+ln x)

For y to be strictly increasing, we have dydx0

xx(1+ln x)0

1+ln x0             [ xx>0, as x>0]

ln x-1xe-1

x[1e,)



Q 3 :    

The number of critical points of the function f(x)=(x-2)2/3(2x+1) is         [2024]

  • 1

     

  • 2

     

  • 3

     

  • 0

     

(2)

Given, f(x)=(x-2)23(2x+1)

f'(x)=23(x-2)-13(2x+1)+2(x-2)23

=2(x-2)-13[2x+13+(x-2)]

=2(x-2)13[2x+3x+1-63]=2(x-2)13(5x-5)3

=103 (x-1)(x-2)13   

For critical points, f'(x)=0 or f'(x) is non-existence.

    Critical points are x=1,2 i.e., 2 in number.



Q 4 :    

For the function f(x)=(cosx)-x+1,xR, between the following two statements

 

(S1) f(x)=0 for only one value of x in [0,π].

 

(S2) f(x) is decreasing in [0,π2] and increasing in [π2,π.]

  • Only (S2) is correct.

     

  • Both (S1) and (S2) are incorrect.

     

  • Only (S1) is correct.

     

  • Both (S1) and (S2) are correct.

     

(3)

We have, f(x)=cosx-x+1,xR

f'(x)=-sinx-1<0xR

f(x) is decreasing xR

For f(x)=0

Now, f(0)=2

f(π)=-π

f(0)f(π)<0

So, f is strictly decreasing in [0,π].

So, f(x)=0 has one solution in [0,π]

(S1) is correct but (S2) is incorrect.



Q 5 :    

Let g(x)=3f(x3)+f(3-x) and f''(x)>0 for all x(0,3). 

If g is decreasing in (0,α) and increasing in (α,3), then 8α is:             [2024]

  • 20

     

  • 18

     

  • 0

     

  • 24

     

(2)

Given, g(x)=3f(x3)+f(3-x)                           ...(i)

Differentiating (i) w.r.t. x, we get

g'(x)=3f'(x3)·13+f'(3-x)(-1)

g'(x)=f'(x3)-f'(3-x)

When g(x) is decreasing, g'(x)<0,

f'(x3)<f'(3-x)x3<(3-x)x<94

Therefore, α=94; So, 8α=8×94=18



Q 6 :    

Consider the function f:[12,1]R defined by f(x)=42x3-32x-1.

 

Consider the statements

 

(I) The curve y=f(x) intersects the x-axis exactly at one point.

 

(II) The curve y=f(x) intersects the x-axis at x=cosπ12

 

Then

  • Both (I) and (II) are incorrect.

     

  • Only (I) is correct.

     

  • Both (I) and (II) are correct.

     

  • Only (II) is correct.

     

(3)

We have, f(x)=42x3-32x-1

So, f'(x)=122x2-320 for x[12,1]

So, f(x) is increasing.

Now, f(12)<0 and f(1)>0

  f(x) intersects x-axis at exactly one point.

So, statement-I is correct.

Let cosα=x

  2(4cos3α-3cosα)-1=0

2cos3α=1cos3α=123α=π4

α=π12

So, statement-II is correct.



Q 7 :    

The function f(x)=xx2-6x-16, xR-{-2,8}            [2024]

  • decreases in (-2,8) and increases in (-,-2)(8,)

     

  • decreases in (-,-2) and increases in (8,)

     

  • increases in (-,-2)(-2,8)(8,)

     

  • decreases in (-,-2)(-2,8)(8,)

     

(4)

f(x)=xx2-6x-16

f'(x)=(x2-6x-16)(1)-x(2x-6)(x2-6x-16)2

=-x2-16(x2-6x-16)2<0x

   f(x) is a decreasing function in its domain.

 f(x) decreases in (-,-2)(-2,8)(8,)



Q 8 :    

Let f:R(0,) be strictly increasing function such that limxf(7x)f(x)=1. Then, the value of  limx[f(5x)f(x)-1] is equal to     [2024]

  • 4

     

  • 0

     

  • 7/5

     

  • 1

     

(2)

 For x>0,

x5x7xf(x)f(5x)f(7x)  (f is strictly increasing function)

f(x)f(x)f(5x)f(x)f(7x)f(x)1f(5x)f(x)f(7x)f(x)

1limxf(5x)f(x)1        [limxf(7x)f(x)=1]

  limxf(5x)f(x)-1=0

 



Q 9 :    

Let the set of all values of p, for which f(x)=(p2-6p+8)(sin22x-cos22x)+2(2-p)x+7 does not have any critical point, be the interval (a,b). Then 16ab is equal to ______ .         [2024]



(252)

f(x)=(p2-6p+8)(sin22x-cos22x)+2(2-p)x+7

=-cos4x(p2-6p+8)+2(2-p)x+7

f'(x)=4sin4x(p2-6p+8)+2(2-p)=0           [ f(x) has no critical points]

sin4x2p-44(p2-6p+8)

sin4x2(p-2)4(p-2)(p-4),p2sin4x12(p-4)

|12(p-4)|>1|2(p-4)|<1

|p-4|<12-12<p-4<12

72<p<92a=72,b=92

So, 16ab=16×72×92=4×62=252