Q 1 :    

Two bodies of mass m and 9m are placed at a distance R. The gravitational potential on the line joining the bodies where the gravitational field equals zero, will be (G = gravitational constant)           [2023]

  • -16GmR

     

  • -20GmR

     

  • -8GmR

     

  • -12GmR

     

(1)

[IMAGE 86]

Let gravitational field at point P is zero which is situated at a distance x from mass m.

    Gmx2=G(9m)(R-x)2

or,  (R-x)2=9x2

or,  R-xx=3 or x=R4                                ....(i)

Gravitational potential at point P, VP=-Gmx-G(9m)R-x

or  VP=-GmR/4-G(9m)3R/4  (using (i))

or   VP=-GmR(4+12)=-16GmR



Q 2 :    

Match List-I and List-II:                        [2022]

  List-I   List-II
(A) Gravitational constant (G) (i) [L2T-2]
(B) Gravitational potential energy  (ii) [M-1L3T-2]
(C) Gravitational potential (iii) [LT-2]
(D) Gravitational intensity (iv) [ML2T-2]

 

Choose the correct answer from the options given below:

  • (A)-(ii), (B)-(i), (C)-(iv), (D)-(iii)

     

  • (A)-(ii), (B)-(iv), (C)-(i), (D)-(iii)

     

  • (A)-(ii), (B)-(iv), (C)-(iii), (D)-(i)

     

  • (A)-(iv), (B)-(ii), (C)-(i), (D)-(iii)

     

(2)

Here, F=GM1M2r2

Gravitational constant,  G=F×r2M1×M2=[M-1L3T-2]

Gravitational potential energy, U=-GM1M2r=[M1L2T-2]

Gravitational potential, V=-GMr=[M0L2T-2]

Gravitational intensity,  I=GMr2=[M0L1T-2]

So, (A)-(ii), (B)-(iv), (C)-(i), (D)-(iii)



Q 3 :    

The work done to raise a mass m from the surface of the earth to a height h, which is equal to the radius of the earth, is                [2019]
 

  • 32mgR

     

  • mgR

     

  • 2mgR

     

  • 12mgR

     

(4)

Work done = Change in potential energy

   =uf-ui=-GMm(R+h)-(-GMmR)

where M is the mass of Earth and R is the radius of Earth.

   W=GMm[1R-1(R+h)]

Now, h=R

    W=GMm[1R-12R]=GMm2R

W=mgR2     [ g=GMR2] 



Q 4 :    

At what height from the surface of earth the gravitation potential and the value of g are -5.4×107Jkg-1 and 6.0ms-2 respectively? Take the radius of earth as 6400 km.         [2016]

  • 1400 km

     

  • 2000 km

     

  • 2600 km

     

  • 1600 km

     

(3)

Gravitation potential at a height h from the surface of earth, Vh=-5.4×107 J kg-1

At the same point, acceleration due to gravity, gh=6 ms-2

R=6400km=6.4×106m

We know, Vh=-GM(R+h),

       gh=GM(R+h)2=-VhR+h

R+h=-Vhgh

   h=-Vhgh-R=-(-5.4×107)6-6.4×106

       =9×106-6.4×106=2600km